Solution Structure of the Set2-Rpb1 Interacting Domain of Human Set2 and Its Interaction with the Hyperphosphorylated C-Terminal Domain of Rpb1
The phosphorylation state of the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II changes as polymerase transcribes a gene, and the distinct forms of the phospho-CTD (PCTD) recruit different nuclear factors to elongating polymerase. The Set2 histone methyltransferase from y...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (49), p.17636-17641 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17641 |
---|---|
container_issue | 49 |
container_start_page | 17636 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Li, Ming Hemali P. Phatnani Guan, Ziqiang Harvey Sage Greenleaf, Arno L. Zhou, Pei |
description | The phosphorylation state of the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II changes as polymerase transcribes a gene, and the distinct forms of the phospho-CTD (PCTD) recruit different nuclear factors to elongating polymerase. The Set2 histone methyltransferase from yeast was recently shown to bind the PCTD of elongating RNA polymerase II by means of a novel domain termed the Set2-Rpb1 interacting (SRI) domain. Here, we report the solution structure of the SRI domain in human Set2 (hSRI domain), which adopts a left-turned three-helix bundle distinctly different from other structurally characterized PCTD-interacting domains. NMR titration experiments mapped the binding surface of the hSRI domain to helices 1 and 2, and Biacore binding studies showed that the domain binds preferably to [Ser-2 + Ser-5]-phosphorylated CTD peptides containing two or more heptad repeats. Point-mutagenesis studies identified five residues critical for PCTD binding. In view of the differential effects of these point mutations on binding to different CTD phosphopeptides, we propose a model for the hSRI domain interaction with the PCTD. |
doi_str_mv | 10.1073/pnas.0506350102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1308900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152779</jstor_id><sourcerecordid>4152779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-8fbcfea23355c2db5d1dc9d3879d74102f08bffd43dacdd7f88bc313e5fe77da3</originalsourceid><addsrcrecordid>eNqF0U1v0zAYB_AIgVgZnLkgFHFA4pDtsR3H8WUSKi-tNAmJjrPl-GVNldjBdoB-Cr4yyVqtgwsHywf_nr_9-MmylwguEDByOTgZL4BCRSggwI-yBQKOiqrk8DhbAGBW1CUuz7JnMe4AgNManmZnqCKopAwtst8b342p9S7fpDCqNAaTe5unrck3JuHi69CgfO2SCVKl1t3mH3wvWzeb1dhLd6dy6XS-TvEEp7yfbdre5az2gwnD1sdphX0nk9H5srgxoW-d7B4Eznc9z55Y2UXz4rifZ98-fbxZrorrL5_Xy_fXhaKYp6K2jbJGYkIoVVg3VCOtuCY145qV009YqBtrdUm0VFozW9eNIogYag1jWpLz7OqQO4xNb7QyLgXZiSG0vQx74WUr_j5x7Vbc-h8CEag5wBTw9hgQ_PfRxCT6NirTddIZP0aBOANaljN88w_c-TFMnUeBARGOcVVP6PKAVPAxBmPvX4JAzJMW86TFadJTxeuHDZz8cbQTeHcEc-UpDouSC8QqUgk7dl0yv9Jk8__Yibw6kF1MPtybElHMGCd_AB46yYI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201392268</pqid></control><display><type>article</type><title>Solution Structure of the Set2-Rpb1 Interacting Domain of Human Set2 and Its Interaction with the Hyperphosphorylated C-Terminal Domain of Rpb1</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Ming ; Hemali P. Phatnani ; Guan, Ziqiang ; Harvey Sage ; Greenleaf, Arno L. ; Zhou, Pei</creator><creatorcontrib>Li, Ming ; Hemali P. Phatnani ; Guan, Ziqiang ; Harvey Sage ; Greenleaf, Arno L. ; Zhou, Pei</creatorcontrib><description>The phosphorylation state of the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II changes as polymerase transcribes a gene, and the distinct forms of the phospho-CTD (PCTD) recruit different nuclear factors to elongating polymerase. The Set2 histone methyltransferase from yeast was recently shown to bind the PCTD of elongating RNA polymerase II by means of a novel domain termed the Set2-Rpb1 interacting (SRI) domain. Here, we report the solution structure of the SRI domain in human Set2 (hSRI domain), which adopts a left-turned three-helix bundle distinctly different from other structurally characterized PCTD-interacting domains. NMR titration experiments mapped the binding surface of the hSRI domain to helices 1 and 2, and Biacore binding studies showed that the domain binds preferably to [Ser-2 + Ser-5]-phosphorylated CTD peptides containing two or more heptad repeats. Point-mutagenesis studies identified five residues critical for PCTD binding. In view of the differential effects of these point mutations on binding to different CTD phosphopeptides, we propose a model for the hSRI domain interaction with the PCTD.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0506350102</identifier><identifier>PMID: 16314571</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Biological Sciences ; Biophysics ; Charge transfer devices ; Enzymes ; Genes ; Histones ; Humans ; Methyltransferases - chemistry ; Methyltransferases - genetics ; Methyltransferases - metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Nuclear Magnetic Resonance, Biomolecular ; Nuclear structure ; Peptides ; Phosphates ; Phosphorylation ; Protein Binding ; Protein Structure, Tertiary ; Proteins ; Ribonucleic acid ; RNA ; RNA Polymerase II - chemistry ; RNA Polymerase II - metabolism ; Sequence Alignment ; Sequence Homology, Amino Acid ; Social interaction ; Titration ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (49), p.17636-17641</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 6, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-8fbcfea23355c2db5d1dc9d3879d74102f08bffd43dacdd7f88bc313e5fe77da3</citedby><cites>FETCH-LOGICAL-c529t-8fbcfea23355c2db5d1dc9d3879d74102f08bffd43dacdd7f88bc313e5fe77da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/49.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152779$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152779$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16314571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Hemali P. Phatnani</creatorcontrib><creatorcontrib>Guan, Ziqiang</creatorcontrib><creatorcontrib>Harvey Sage</creatorcontrib><creatorcontrib>Greenleaf, Arno L.</creatorcontrib><creatorcontrib>Zhou, Pei</creatorcontrib><title>Solution Structure of the Set2-Rpb1 Interacting Domain of Human Set2 and Its Interaction with the Hyperphosphorylated C-Terminal Domain of Rpb1</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The phosphorylation state of the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II changes as polymerase transcribes a gene, and the distinct forms of the phospho-CTD (PCTD) recruit different nuclear factors to elongating polymerase. The Set2 histone methyltransferase from yeast was recently shown to bind the PCTD of elongating RNA polymerase II by means of a novel domain termed the Set2-Rpb1 interacting (SRI) domain. Here, we report the solution structure of the SRI domain in human Set2 (hSRI domain), which adopts a left-turned three-helix bundle distinctly different from other structurally characterized PCTD-interacting domains. NMR titration experiments mapped the binding surface of the hSRI domain to helices 1 and 2, and Biacore binding studies showed that the domain binds preferably to [Ser-2 + Ser-5]-phosphorylated CTD peptides containing two or more heptad repeats. Point-mutagenesis studies identified five residues critical for PCTD binding. In view of the differential effects of these point mutations on binding to different CTD phosphopeptides, we propose a model for the hSRI domain interaction with the PCTD.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Charge transfer devices</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Histones</subject><subject>Humans</subject><subject>Methyltransferases - chemistry</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nuclear structure</subject><subject>Peptides</subject><subject>Phosphates</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase II - metabolism</subject><subject>Sequence Alignment</subject><subject>Sequence Homology, Amino Acid</subject><subject>Social interaction</subject><subject>Titration</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v0zAYB_AIgVgZnLkgFHFA4pDtsR3H8WUSKi-tNAmJjrPl-GVNldjBdoB-Cr4yyVqtgwsHywf_nr_9-MmylwguEDByOTgZL4BCRSggwI-yBQKOiqrk8DhbAGBW1CUuz7JnMe4AgNManmZnqCKopAwtst8b342p9S7fpDCqNAaTe5unrck3JuHi69CgfO2SCVKl1t3mH3wvWzeb1dhLd6dy6XS-TvEEp7yfbdre5az2gwnD1sdphX0nk9H5srgxoW-d7B4Eznc9z55Y2UXz4rifZ98-fbxZrorrL5_Xy_fXhaKYp6K2jbJGYkIoVVg3VCOtuCY145qV009YqBtrdUm0VFozW9eNIogYag1jWpLz7OqQO4xNb7QyLgXZiSG0vQx74WUr_j5x7Vbc-h8CEag5wBTw9hgQ_PfRxCT6NirTddIZP0aBOANaljN88w_c-TFMnUeBARGOcVVP6PKAVPAxBmPvX4JAzJMW86TFadJTxeuHDZz8cbQTeHcEc-UpDouSC8QqUgk7dl0yv9Jk8__Yibw6kF1MPtybElHMGCd_AB46yYI</recordid><startdate>20051206</startdate><enddate>20051206</enddate><creator>Li, Ming</creator><creator>Hemali P. Phatnani</creator><creator>Guan, Ziqiang</creator><creator>Harvey Sage</creator><creator>Greenleaf, Arno L.</creator><creator>Zhou, Pei</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20051206</creationdate><title>Solution Structure of the Set2-Rpb1 Interacting Domain of Human Set2 and Its Interaction with the Hyperphosphorylated C-Terminal Domain of Rpb1</title><author>Li, Ming ; Hemali P. Phatnani ; Guan, Ziqiang ; Harvey Sage ; Greenleaf, Arno L. ; Zhou, Pei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-8fbcfea23355c2db5d1dc9d3879d74102f08bffd43dacdd7f88bc313e5fe77da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Charge transfer devices</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Histones</topic><topic>Humans</topic><topic>Methyltransferases - chemistry</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nuclear structure</topic><topic>Peptides</topic><topic>Phosphates</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase II - metabolism</topic><topic>Sequence Alignment</topic><topic>Sequence Homology, Amino Acid</topic><topic>Social interaction</topic><topic>Titration</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Hemali P. Phatnani</creatorcontrib><creatorcontrib>Guan, Ziqiang</creatorcontrib><creatorcontrib>Harvey Sage</creatorcontrib><creatorcontrib>Greenleaf, Arno L.</creatorcontrib><creatorcontrib>Zhou, Pei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming</au><au>Hemali P. Phatnani</au><au>Guan, Ziqiang</au><au>Harvey Sage</au><au>Greenleaf, Arno L.</au><au>Zhou, Pei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution Structure of the Set2-Rpb1 Interacting Domain of Human Set2 and Its Interaction with the Hyperphosphorylated C-Terminal Domain of Rpb1</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-12-06</date><risdate>2005</risdate><volume>102</volume><issue>49</issue><spage>17636</spage><epage>17641</epage><pages>17636-17641</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The phosphorylation state of the C-terminal repeat domain (CTD) of the largest subunit of RNA polymerase II changes as polymerase transcribes a gene, and the distinct forms of the phospho-CTD (PCTD) recruit different nuclear factors to elongating polymerase. The Set2 histone methyltransferase from yeast was recently shown to bind the PCTD of elongating RNA polymerase II by means of a novel domain termed the Set2-Rpb1 interacting (SRI) domain. Here, we report the solution structure of the SRI domain in human Set2 (hSRI domain), which adopts a left-turned three-helix bundle distinctly different from other structurally characterized PCTD-interacting domains. NMR titration experiments mapped the binding surface of the hSRI domain to helices 1 and 2, and Biacore binding studies showed that the domain binds preferably to [Ser-2 + Ser-5]-phosphorylated CTD peptides containing two or more heptad repeats. Point-mutagenesis studies identified five residues critical for PCTD binding. In view of the differential effects of these point mutations on binding to different CTD phosphopeptides, we propose a model for the hSRI domain interaction with the PCTD.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16314571</pmid><doi>10.1073/pnas.0506350102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (49), p.17636-17641 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1308900 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Biological Sciences Biophysics Charge transfer devices Enzymes Genes Histones Humans Methyltransferases - chemistry Methyltransferases - genetics Methyltransferases - metabolism Models, Molecular Molecular Sequence Data Mutation - genetics Nuclear Magnetic Resonance, Biomolecular Nuclear structure Peptides Phosphates Phosphorylation Protein Binding Protein Structure, Tertiary Proteins Ribonucleic acid RNA RNA Polymerase II - chemistry RNA Polymerase II - metabolism Sequence Alignment Sequence Homology, Amino Acid Social interaction Titration Yeast Yeasts |
title | Solution Structure of the Set2-Rpb1 Interacting Domain of Human Set2 and Its Interaction with the Hyperphosphorylated C-Terminal Domain of Rpb1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20Structure%20of%20the%20Set2-Rpb1%20Interacting%20Domain%20of%20Human%20Set2%20and%20Its%20Interaction%20with%20the%20Hyperphosphorylated%20C-Terminal%20Domain%20of%20Rpb1&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Li,%20Ming&rft.date=2005-12-06&rft.volume=102&rft.issue=49&rft.spage=17636&rft.epage=17641&rft.pages=17636-17641&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0506350102&rft_dat=%3Cjstor_pubme%3E4152779%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201392268&rft_id=info:pmid/16314571&rft_jstor_id=4152779&rfr_iscdi=true |