Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge

The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expressio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and Immunity 2005-12, Vol.73 (12), p.8266-8274
Hauptverfasser: Koya, Vijay, Moayeri, Mahtab, Leppla, Stephen H, Daniell, Henry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8274
container_issue 12
container_start_page 8266
container_title Infection and Immunity
container_volume 73
creator Koya, Vijay
Moayeri, Mahtab
Leppla, Stephen H
Daniell, Henry
description The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expressed in transgenic tobacco chloroplasts by inserting the pagA gene into the chloroplast genome. Chloroplast integration of the pagA gene was confirmed by PCR and Southern analysis. Mature leaves grown under continuous illumination contained PA as up to 14.2% of the total soluble protein. Cytotoxicity measurements in macrophage lysis assays showed that chloroplast-derived PA was equal in potency to PA produced in B. anthracis. Subcutaneous immunization of mice with partially purified chloroplast-derived or B. anthracis-derived PA with adjuvant yielded immunoglobulin G titers up to 1:320,000, and both groups of mice survived (100%) challenge with lethal doses of toxin. An average yield of about 150 mg of PA per plant should produce 360 million doses of a purified vaccine free of bacterial toxins edema factor and lethal factor from 1 acre of land. Such high expression levels without using fermenters and the immunoprotection offered by the chloroplast-derived PA should facilitate development of a cleaner and safer anthrax vaccine at a lower production cost. These results demonstrate the immunogenic and immunoprotective properties of plant-derived anthrax vaccine antigen.
doi_str_mv 10.1128/IAI.73.12.8266-8274.2005
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1307059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68814125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-a5279729a04f15dacc08435727f9b57ec4a199dd358acd8358d66b503db644533</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EomngL8AKCW4b_Lm2OVQKKR-RgqjUlqs18XqzRvsR7E1aOPDb8ZKIwInTaGaeeT2eF6GM4BkhVL1ezpczyWaEzhQtilxRyWcUY_EATQjWKheC0odogjHRuRaFPEPnMX5NKedcPUZnpKBaM8om6OdVA92Qv4XoyuwLWOs79yb75K3Llm276_yPVL_zQ50t6qYP_baBOOSXLvh9asy7oQ5wn12FfnB2SLWx5Deuy653YX_MfyMrN9TQZDf9ve-SFjSN6zbuCXpUQRPd02Ocotv3724WH_PV5w_LxXyVW6HEkIOgUkuqAfOKiDKtiRVnQlJZ6bWQznIgWpclEwpsqVIoi2ItMCvXBeeCsSm6OOhud-vWldZ1Q4DGbINvIXw3PXjzb6fztdn0e0MYlljoJPDqKBD6bzsXB9P6aF2Truf6XTSFUoQTKv4LEs2kTmgC1QG0oY8xuOrPNgSb0WWTXDaSGULN6LIZXTajy2n02d-_OQ0ebU3AyyMA0UJTBeisjycunRKP4BS9OHC139R3PjgDsTU-XeP0boKeH6AKegObkIRurylOlyGYE8II-wV4ncbP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19379141</pqid></control><display><type>article</type><title>Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge</title><source>MEDLINE</source><source>American Society for Microbiology Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Koya, Vijay ; Moayeri, Mahtab ; Leppla, Stephen H ; Daniell, Henry</creator><creatorcontrib>Koya, Vijay ; Moayeri, Mahtab ; Leppla, Stephen H ; Daniell, Henry</creatorcontrib><description>The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expressed in transgenic tobacco chloroplasts by inserting the pagA gene into the chloroplast genome. Chloroplast integration of the pagA gene was confirmed by PCR and Southern analysis. Mature leaves grown under continuous illumination contained PA as up to 14.2% of the total soluble protein. Cytotoxicity measurements in macrophage lysis assays showed that chloroplast-derived PA was equal in potency to PA produced in B. anthracis. Subcutaneous immunization of mice with partially purified chloroplast-derived or B. anthracis-derived PA with adjuvant yielded immunoglobulin G titers up to 1:320,000, and both groups of mice survived (100%) challenge with lethal doses of toxin. An average yield of about 150 mg of PA per plant should produce 360 million doses of a purified vaccine free of bacterial toxins edema factor and lethal factor from 1 acre of land. Such high expression levels without using fermenters and the immunoprotection offered by the chloroplast-derived PA should facilitate development of a cleaner and safer anthrax vaccine at a lower production cost. These results demonstrate the immunogenic and immunoprotective properties of plant-derived anthrax vaccine antigen.</description><identifier>ISSN: 0019-9567</identifier><identifier>EISSN: 1098-5522</identifier><identifier>DOI: 10.1128/IAI.73.12.8266-8274.2005</identifier><identifier>PMID: 16299323</identifier><identifier>CODEN: INFIBR</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Animals ; Anthrax - prevention &amp; control ; Anthrax Vaccines - administration &amp; dosage ; Anthrax Vaccines - genetics ; Anthrax Vaccines - immunology ; Antigens, Bacterial - biosynthesis ; Antigens, Bacterial - genetics ; Antigens, Bacterial - immunology ; Applied microbiology ; Bacillus anthracis ; Bacterial Toxins - biosynthesis ; Bacterial Toxins - genetics ; Bacterial Toxins - immunology ; Biological and medical sciences ; Blotting, Southern ; Chloroplasts - genetics ; Chloroplasts - metabolism ; Fundamental and applied biological sciences. Psychology ; Immune Sera - immunology ; Immunization ; Immunoblotting ; Immunoglobulin G - blood ; Macrophages - drug effects ; Mice ; Mice, Inbred BALB C ; Microbial Immunity and Vaccines ; Microbiology ; Nicotiana - genetics ; Nicotiana - metabolism ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)</subject><ispartof>Infection and Immunity, 2005-12, Vol.73 (12), p.8266-8274</ispartof><rights>2006 INIST-CNRS</rights><rights>Copyright © 2005, American Society for Microbiology 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-a5279729a04f15dacc08435727f9b57ec4a199dd358acd8358d66b503db644533</citedby><cites>FETCH-LOGICAL-c585t-a5279729a04f15dacc08435727f9b57ec4a199dd358acd8358d66b503db644533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1307059/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1307059/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,3189,3190,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17290932$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16299323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koya, Vijay</creatorcontrib><creatorcontrib>Moayeri, Mahtab</creatorcontrib><creatorcontrib>Leppla, Stephen H</creatorcontrib><creatorcontrib>Daniell, Henry</creatorcontrib><title>Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge</title><title>Infection and Immunity</title><addtitle>Infect Immun</addtitle><description>The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expressed in transgenic tobacco chloroplasts by inserting the pagA gene into the chloroplast genome. Chloroplast integration of the pagA gene was confirmed by PCR and Southern analysis. Mature leaves grown under continuous illumination contained PA as up to 14.2% of the total soluble protein. Cytotoxicity measurements in macrophage lysis assays showed that chloroplast-derived PA was equal in potency to PA produced in B. anthracis. Subcutaneous immunization of mice with partially purified chloroplast-derived or B. anthracis-derived PA with adjuvant yielded immunoglobulin G titers up to 1:320,000, and both groups of mice survived (100%) challenge with lethal doses of toxin. An average yield of about 150 mg of PA per plant should produce 360 million doses of a purified vaccine free of bacterial toxins edema factor and lethal factor from 1 acre of land. Such high expression levels without using fermenters and the immunoprotection offered by the chloroplast-derived PA should facilitate development of a cleaner and safer anthrax vaccine at a lower production cost. These results demonstrate the immunogenic and immunoprotective properties of plant-derived anthrax vaccine antigen.</description><subject>Animals</subject><subject>Anthrax - prevention &amp; control</subject><subject>Anthrax Vaccines - administration &amp; dosage</subject><subject>Anthrax Vaccines - genetics</subject><subject>Anthrax Vaccines - immunology</subject><subject>Antigens, Bacterial - biosynthesis</subject><subject>Antigens, Bacterial - genetics</subject><subject>Antigens, Bacterial - immunology</subject><subject>Applied microbiology</subject><subject>Bacillus anthracis</subject><subject>Bacterial Toxins - biosynthesis</subject><subject>Bacterial Toxins - genetics</subject><subject>Bacterial Toxins - immunology</subject><subject>Biological and medical sciences</subject><subject>Blotting, Southern</subject><subject>Chloroplasts - genetics</subject><subject>Chloroplasts - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Immune Sera - immunology</subject><subject>Immunization</subject><subject>Immunoblotting</subject><subject>Immunoglobulin G - blood</subject><subject>Macrophages - drug effects</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Microbial Immunity and Vaccines</subject><subject>Microbiology</subject><subject>Nicotiana - genetics</subject><subject>Nicotiana - metabolism</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)</subject><issn>0019-9567</issn><issn>1098-5522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EomngL8AKCW4b_Lm2OVQKKR-RgqjUlqs18XqzRvsR7E1aOPDb8ZKIwInTaGaeeT2eF6GM4BkhVL1ezpczyWaEzhQtilxRyWcUY_EATQjWKheC0odogjHRuRaFPEPnMX5NKedcPUZnpKBaM8om6OdVA92Qv4XoyuwLWOs79yb75K3Llm276_yPVL_zQ50t6qYP_baBOOSXLvh9asy7oQ5wn12FfnB2SLWx5Deuy653YX_MfyMrN9TQZDf9ve-SFjSN6zbuCXpUQRPd02Ocotv3724WH_PV5w_LxXyVW6HEkIOgUkuqAfOKiDKtiRVnQlJZ6bWQznIgWpclEwpsqVIoi2ItMCvXBeeCsSm6OOhud-vWldZ1Q4DGbINvIXw3PXjzb6fztdn0e0MYlljoJPDqKBD6bzsXB9P6aF2Truf6XTSFUoQTKv4LEs2kTmgC1QG0oY8xuOrPNgSb0WWTXDaSGULN6LIZXTajy2n02d-_OQ0ebU3AyyMA0UJTBeisjycunRKP4BS9OHC139R3PjgDsTU-XeP0boKeH6AKegObkIRurylOlyGYE8II-wV4ncbP</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Koya, Vijay</creator><creator>Moayeri, Mahtab</creator><creator>Leppla, Stephen H</creator><creator>Daniell, Henry</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7T5</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051201</creationdate><title>Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge</title><author>Koya, Vijay ; Moayeri, Mahtab ; Leppla, Stephen H ; Daniell, Henry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-a5279729a04f15dacc08435727f9b57ec4a199dd358acd8358d66b503db644533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Anthrax - prevention &amp; control</topic><topic>Anthrax Vaccines - administration &amp; dosage</topic><topic>Anthrax Vaccines - genetics</topic><topic>Anthrax Vaccines - immunology</topic><topic>Antigens, Bacterial - biosynthesis</topic><topic>Antigens, Bacterial - genetics</topic><topic>Antigens, Bacterial - immunology</topic><topic>Applied microbiology</topic><topic>Bacillus anthracis</topic><topic>Bacterial Toxins - biosynthesis</topic><topic>Bacterial Toxins - genetics</topic><topic>Bacterial Toxins - immunology</topic><topic>Biological and medical sciences</topic><topic>Blotting, Southern</topic><topic>Chloroplasts - genetics</topic><topic>Chloroplasts - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Immune Sera - immunology</topic><topic>Immunization</topic><topic>Immunoblotting</topic><topic>Immunoglobulin G - blood</topic><topic>Macrophages - drug effects</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Microbial Immunity and Vaccines</topic><topic>Microbiology</topic><topic>Nicotiana - genetics</topic><topic>Nicotiana - metabolism</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koya, Vijay</creatorcontrib><creatorcontrib>Moayeri, Mahtab</creatorcontrib><creatorcontrib>Leppla, Stephen H</creatorcontrib><creatorcontrib>Daniell, Henry</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Infection and Immunity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koya, Vijay</au><au>Moayeri, Mahtab</au><au>Leppla, Stephen H</au><au>Daniell, Henry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge</atitle><jtitle>Infection and Immunity</jtitle><addtitle>Infect Immun</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>73</volume><issue>12</issue><spage>8266</spage><epage>8274</epage><pages>8266-8274</pages><issn>0019-9567</issn><eissn>1098-5522</eissn><coden>INFIBR</coden><abstract>The currently available human vaccine for anthrax, derived from the culture supernatant of Bacillus anthracis, contains the protective antigen (PA) and traces of the lethal and edema factors, which may contribute to adverse side effects associated with this vaccine. Therefore, an effective expression system that can provide a clean, safe, and efficacious vaccine is required. In an effort to produce anthrax vaccine in large quantities and free of extraneous bacterial contaminants, PA was expressed in transgenic tobacco chloroplasts by inserting the pagA gene into the chloroplast genome. Chloroplast integration of the pagA gene was confirmed by PCR and Southern analysis. Mature leaves grown under continuous illumination contained PA as up to 14.2% of the total soluble protein. Cytotoxicity measurements in macrophage lysis assays showed that chloroplast-derived PA was equal in potency to PA produced in B. anthracis. Subcutaneous immunization of mice with partially purified chloroplast-derived or B. anthracis-derived PA with adjuvant yielded immunoglobulin G titers up to 1:320,000, and both groups of mice survived (100%) challenge with lethal doses of toxin. An average yield of about 150 mg of PA per plant should produce 360 million doses of a purified vaccine free of bacterial toxins edema factor and lethal factor from 1 acre of land. Such high expression levels without using fermenters and the immunoprotection offered by the chloroplast-derived PA should facilitate development of a cleaner and safer anthrax vaccine at a lower production cost. These results demonstrate the immunogenic and immunoprotective properties of plant-derived anthrax vaccine antigen.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>16299323</pmid><doi>10.1128/IAI.73.12.8266-8274.2005</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0019-9567
ispartof Infection and Immunity, 2005-12, Vol.73 (12), p.8266-8274
issn 0019-9567
1098-5522
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1307059
source MEDLINE; American Society for Microbiology Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Anthrax - prevention & control
Anthrax Vaccines - administration & dosage
Anthrax Vaccines - genetics
Anthrax Vaccines - immunology
Antigens, Bacterial - biosynthesis
Antigens, Bacterial - genetics
Antigens, Bacterial - immunology
Applied microbiology
Bacillus anthracis
Bacterial Toxins - biosynthesis
Bacterial Toxins - genetics
Bacterial Toxins - immunology
Biological and medical sciences
Blotting, Southern
Chloroplasts - genetics
Chloroplasts - metabolism
Fundamental and applied biological sciences. Psychology
Immune Sera - immunology
Immunization
Immunoblotting
Immunoglobulin G - blood
Macrophages - drug effects
Mice
Mice, Inbred BALB C
Microbial Immunity and Vaccines
Microbiology
Nicotiana - genetics
Nicotiana - metabolism
Plant Leaves - genetics
Plant Leaves - metabolism
Plants, Genetically Modified - genetics
Plants, Genetically Modified - metabolism
Vaccines, antisera, therapeutical immunoglobulins and monoclonal antibodies (general aspects)
title Plant-Based Vaccine: Mice Immunized with Chloroplast-Derived Anthrax Protective Antigen Survive Anthrax Lethal Toxin Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T04%3A14%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plant-Based%20Vaccine:%20Mice%20Immunized%20with%20Chloroplast-Derived%20Anthrax%20Protective%20Antigen%20Survive%20Anthrax%20Lethal%20Toxin%20Challenge&rft.jtitle=Infection%20and%20Immunity&rft.au=Koya,%20Vijay&rft.date=2005-12-01&rft.volume=73&rft.issue=12&rft.spage=8266&rft.epage=8274&rft.pages=8266-8274&rft.issn=0019-9567&rft.eissn=1098-5522&rft.coden=INFIBR&rft_id=info:doi/10.1128/IAI.73.12.8266-8274.2005&rft_dat=%3Cproquest_pubme%3E68814125%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19379141&rft_id=info:pmid/16299323&rfr_iscdi=true