Molecular Dynamics Simulation of Transmembrane Polypeptide Orientational Fluctuations
The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent 2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reori...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2005-01, Vol.88 (1), p.105-117 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Biophysical journal |
container_volume | 88 |
creator | Goodyear, David J. Sharpe, Simon Grant, Chris W.M. Morrow, Michael R. |
description | The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent
2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reorientation about the bilayer normal but have a preferred average azimuthal orientation about the helix axis. In this work, interactions that might contribute to this behavior were investigated in a simulated system consisting of 64 molecules of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) and one
α-helical polypeptide with the sequence acetyl-KK-(LA)
11-KK-amide. In one simulation, initiated with the peptide oriented along the bilayer normal, the system was allowed to evolve for 8.5
ns at 1
atm of pressure and a temperature of 55°C. A second simulation was initiated with the peptide orientation chosen to match a set of experimentally observed alanine methyl deuteron quadrupole splittings and allowed to proceed for 10
ns. Simulated alanine methyl group orientations were found to be inequivalent, a result that is consistent with
2H NMR observations of specifically labeled polypeptides in POPC bilayers. Helix tilt varied substantially over the durations of both simulations. In the first simulation, the peptide tended toward an orientation about the helix axis similar to that suggested by experiment. In the second simulation, orientation about the helix axis tended to return to this value after an excursion. These results provide some insight into how interactions at the bilayer surface can constrain reorientation about the helix axis while accommodating large changes in helix tilt. |
doi_str_mv | 10.1529/biophysj.104.047506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349505730915</els_id><sourcerecordid>67345536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-ede08ee75e73bb739e1cd136ad05e215d692e6db3d7d040c50b679759f3799553</originalsourceid><addsrcrecordid>eNp9kU1vFDEMhiMEokvhFyChEQdusziTr80BJFQoIBUVifYcZRIvzSozGZKZSvvvCd3l88DJivPYfu2XkKcU1lR0-mUf0nSzL7s1Bb4GrgTIe2RFBe9agI28T1YAIFvGtTghj0rZAdBOAH1ITiq00Qzkilx_ShHdEm1u3u5HOwRXmi9hqIk5pLFJ2-Yq27EMOPQ1YvM5xf2E0xw8Npc54DjfgTY253Fx83L3Ko_Jg62NBZ8c4ym5Pn93dfahvbh8__HszUXrhIC5RY-wQVQCFet7xTRS5ymT1oPAjgovdYfS98wrDxycgF4qrYTeMqW1EOyUvD70nZZ-QO-qnGyjmXIYbN6bZIP5-2cMN-ZrujWUAdcaaoMXxwY5fVuwzGYIxWGMdde0FCMV43WOrODzf8BdWnLdu5gqVIHiilaIHSCXUykZt7-UUDA_PDM_PasJbg6e1apnfy7xu-ZoUgVeHQCsp7wNmE1x9fIOfcjoZuNT-O-A78bJrDM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215707471</pqid></control><display><type>article</type><title>Molecular Dynamics Simulation of Transmembrane Polypeptide Orientational Fluctuations</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Goodyear, David J. ; Sharpe, Simon ; Grant, Chris W.M. ; Morrow, Michael R.</creator><creatorcontrib>Goodyear, David J. ; Sharpe, Simon ; Grant, Chris W.M. ; Morrow, Michael R.</creatorcontrib><description>The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent
2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reorientation about the bilayer normal but have a preferred average azimuthal orientation about the helix axis. In this work, interactions that might contribute to this behavior were investigated in a simulated system consisting of 64 molecules of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) and one
α-helical polypeptide with the sequence acetyl-KK-(LA)
11-KK-amide. In one simulation, initiated with the peptide oriented along the bilayer normal, the system was allowed to evolve for 8.5
ns at 1
atm of pressure and a temperature of 55°C. A second simulation was initiated with the peptide orientation chosen to match a set of experimentally observed alanine methyl deuteron quadrupole splittings and allowed to proceed for 10
ns. Simulated alanine methyl group orientations were found to be inequivalent, a result that is consistent with
2H NMR observations of specifically labeled polypeptides in POPC bilayers. Helix tilt varied substantially over the durations of both simulations. In the first simulation, the peptide tended toward an orientation about the helix axis similar to that suggested by experiment. In the second simulation, orientation about the helix axis tended to return to this value after an excursion. These results provide some insight into how interactions at the bilayer surface can constrain reorientation about the helix axis while accommodating large changes in helix tilt.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.104.047506</identifier><identifier>PMID: 15489306</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alanine - chemistry ; Biochemistry ; Biophysical Theory and Modeling ; Computer Simulation ; Lipid Bilayers - chemistry ; Lipids - chemistry ; Lysine - chemistry ; Macromolecular Substances - chemistry ; Magnetic Resonance Spectroscopy - methods ; Membranes, Artificial ; Models, Molecular ; Models, Statistical ; Molecular biology ; Molecular Conformation ; Nitrogen - chemistry ; Peptides ; Peptides - chemistry ; Phosphatidylcholines - chemistry ; Protein Structure, Secondary ; Simulation ; Temperature ; Time Factors</subject><ispartof>Biophysical journal, 2005-01, Vol.88 (1), p.105-117</ispartof><rights>2005 The Biophysical Society</rights><rights>Copyright Biophysical Society Jan 2005</rights><rights>Copyright © 2005, Biophysical Society 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-ede08ee75e73bb739e1cd136ad05e215d692e6db3d7d040c50b679759f3799553</citedby><cites>FETCH-LOGICAL-c550t-ede08ee75e73bb739e1cd136ad05e215d692e6db3d7d040c50b679759f3799553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304990/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.104.047506$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15489306$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goodyear, David J.</creatorcontrib><creatorcontrib>Sharpe, Simon</creatorcontrib><creatorcontrib>Grant, Chris W.M.</creatorcontrib><creatorcontrib>Morrow, Michael R.</creatorcontrib><title>Molecular Dynamics Simulation of Transmembrane Polypeptide Orientational Fluctuations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent
2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reorientation about the bilayer normal but have a preferred average azimuthal orientation about the helix axis. In this work, interactions that might contribute to this behavior were investigated in a simulated system consisting of 64 molecules of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) and one
α-helical polypeptide with the sequence acetyl-KK-(LA)
11-KK-amide. In one simulation, initiated with the peptide oriented along the bilayer normal, the system was allowed to evolve for 8.5
ns at 1
atm of pressure and a temperature of 55°C. A second simulation was initiated with the peptide orientation chosen to match a set of experimentally observed alanine methyl deuteron quadrupole splittings and allowed to proceed for 10
ns. Simulated alanine methyl group orientations were found to be inequivalent, a result that is consistent with
2H NMR observations of specifically labeled polypeptides in POPC bilayers. Helix tilt varied substantially over the durations of both simulations. In the first simulation, the peptide tended toward an orientation about the helix axis similar to that suggested by experiment. In the second simulation, orientation about the helix axis tended to return to this value after an excursion. These results provide some insight into how interactions at the bilayer surface can constrain reorientation about the helix axis while accommodating large changes in helix tilt.</description><subject>Alanine - chemistry</subject><subject>Biochemistry</subject><subject>Biophysical Theory and Modeling</subject><subject>Computer Simulation</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids - chemistry</subject><subject>Lysine - chemistry</subject><subject>Macromolecular Substances - chemistry</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Membranes, Artificial</subject><subject>Models, Molecular</subject><subject>Models, Statistical</subject><subject>Molecular biology</subject><subject>Molecular Conformation</subject><subject>Nitrogen - chemistry</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Protein Structure, Secondary</subject><subject>Simulation</subject><subject>Temperature</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1vFDEMhiMEokvhFyChEQdusziTr80BJFQoIBUVifYcZRIvzSozGZKZSvvvCd3l88DJivPYfu2XkKcU1lR0-mUf0nSzL7s1Bb4GrgTIe2RFBe9agI28T1YAIFvGtTghj0rZAdBOAH1ITiq00Qzkilx_ShHdEm1u3u5HOwRXmi9hqIk5pLFJ2-Yq27EMOPQ1YvM5xf2E0xw8Npc54DjfgTY253Fx83L3Ko_Jg62NBZ8c4ym5Pn93dfahvbh8__HszUXrhIC5RY-wQVQCFet7xTRS5ymT1oPAjgovdYfS98wrDxycgF4qrYTeMqW1EOyUvD70nZZ-QO-qnGyjmXIYbN6bZIP5-2cMN-ZrujWUAdcaaoMXxwY5fVuwzGYIxWGMdde0FCMV43WOrODzf8BdWnLdu5gqVIHiilaIHSCXUykZt7-UUDA_PDM_PasJbg6e1apnfy7xu-ZoUgVeHQCsp7wNmE1x9fIOfcjoZuNT-O-A78bJrDM</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Goodyear, David J.</creator><creator>Sharpe, Simon</creator><creator>Grant, Chris W.M.</creator><creator>Morrow, Michael R.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050101</creationdate><title>Molecular Dynamics Simulation of Transmembrane Polypeptide Orientational Fluctuations</title><author>Goodyear, David J. ; Sharpe, Simon ; Grant, Chris W.M. ; Morrow, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-ede08ee75e73bb739e1cd136ad05e215d692e6db3d7d040c50b679759f3799553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Alanine - chemistry</topic><topic>Biochemistry</topic><topic>Biophysical Theory and Modeling</topic><topic>Computer Simulation</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids - chemistry</topic><topic>Lysine - chemistry</topic><topic>Macromolecular Substances - chemistry</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Membranes, Artificial</topic><topic>Models, Molecular</topic><topic>Models, Statistical</topic><topic>Molecular biology</topic><topic>Molecular Conformation</topic><topic>Nitrogen - chemistry</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Protein Structure, Secondary</topic><topic>Simulation</topic><topic>Temperature</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goodyear, David J.</creatorcontrib><creatorcontrib>Sharpe, Simon</creatorcontrib><creatorcontrib>Grant, Chris W.M.</creatorcontrib><creatorcontrib>Morrow, Michael R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goodyear, David J.</au><au>Sharpe, Simon</au><au>Grant, Chris W.M.</au><au>Morrow, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Transmembrane Polypeptide Orientational Fluctuations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>88</volume><issue>1</issue><spage>105</spage><epage>117</epage><pages>105-117</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent
2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reorientation about the bilayer normal but have a preferred average azimuthal orientation about the helix axis. In this work, interactions that might contribute to this behavior were investigated in a simulated system consisting of 64 molecules of 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) and one
α-helical polypeptide with the sequence acetyl-KK-(LA)
11-KK-amide. In one simulation, initiated with the peptide oriented along the bilayer normal, the system was allowed to evolve for 8.5
ns at 1
atm of pressure and a temperature of 55°C. A second simulation was initiated with the peptide orientation chosen to match a set of experimentally observed alanine methyl deuteron quadrupole splittings and allowed to proceed for 10
ns. Simulated alanine methyl group orientations were found to be inequivalent, a result that is consistent with
2H NMR observations of specifically labeled polypeptides in POPC bilayers. Helix tilt varied substantially over the durations of both simulations. In the first simulation, the peptide tended toward an orientation about the helix axis similar to that suggested by experiment. In the second simulation, orientation about the helix axis tended to return to this value after an excursion. These results provide some insight into how interactions at the bilayer surface can constrain reorientation about the helix axis while accommodating large changes in helix tilt.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15489306</pmid><doi>10.1529/biophysj.104.047506</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2005-01, Vol.88 (1), p.105-117 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304990 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Alanine - chemistry Biochemistry Biophysical Theory and Modeling Computer Simulation Lipid Bilayers - chemistry Lipids - chemistry Lysine - chemistry Macromolecular Substances - chemistry Magnetic Resonance Spectroscopy - methods Membranes, Artificial Models, Molecular Models, Statistical Molecular biology Molecular Conformation Nitrogen - chemistry Peptides Peptides - chemistry Phosphatidylcholines - chemistry Protein Structure, Secondary Simulation Temperature Time Factors |
title | Molecular Dynamics Simulation of Transmembrane Polypeptide Orientational Fluctuations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Transmembrane%20Polypeptide%20Orientational%20Fluctuations&rft.jtitle=Biophysical%20journal&rft.au=Goodyear,%20David%20J.&rft.date=2005-01-01&rft.volume=88&rft.issue=1&rft.spage=105&rft.epage=117&rft.pages=105-117&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.104.047506&rft_dat=%3Cproquest_pubme%3E67345536%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215707471&rft_id=info:pmid/15489306&rft_els_id=S0006349505730915&rfr_iscdi=true |