Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L α -to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics

Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl- sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar ( L α ) pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2004-10, Vol.87 (4), p.2107-2115
Hauptverfasser: Nielsen, Steve O., Lopez, Carlos F., Ivanov, Ivaylo, Moore, Preston B., Shelley, John C., Klein, Michael L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2115
container_issue 4
container_start_page 2107
container_title Biophysical journal
container_volume 87
creator Nielsen, Steve O.
Lopez, Carlos F.
Ivanov, Ivaylo
Moore, Preston B.
Shelley, John C.
Klein, Michael L.
description Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl- sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar ( L α ) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L α -to-inverse hexagonal ( H II) peptide-induced phase transition.
doi_str_mv 10.1529/biophysj.104.040311
format Article
fullrecord <record><control><sourceid>elsevier_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304638</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349504736905</els_id><sourcerecordid>S0006349504736905</sourcerecordid><originalsourceid>FETCH-LOGICAL-e264t-fc149f56b5c0f4d3e39c2afa58ce2814a83446778f24d705372dacff2eab56f33</originalsourceid><addsrcrecordid>eNpVkU1uE0EQhVsIREzgBGz6AmP6dzxegIQMhEiOiESybtV0V8cVebpH3WNLPgAH4iKciQmGBasnVb33qVSPsbdSLKVV63c95XF3qo9LKcxSGKGlfMYW0hrVCNG1z9lCCNE22qztBXtV66MQUlkhX7KL2WSNkXbBftwVSHXAoZ8V-S2OEwVsrlM4eAx8SyMF_j2XidIDhxT4DfodJKoDz5Fv-a-fvJny7D9imebA7Q4q8j9Qmignfl-fkpsMpWJzVYASv8l79Ic9FP7plGAgX1-zFxH2Fd_81Ut2_-Xz3eZrs_12db35uG1QtWZqopdmHW3bWy-iCRr12iuIYDuPqpMGOm1Mu1p1UZmwElavVAAfo0LobRu1vmQfztzx0A8YPKapwN6NhQYoJ5eB3P-bRDv3kI9OamFa3c2A92cAzlceCYurnjDNr6KCfnIhk5PCPfXj_vUzD4w796N_AyE9iTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L α -to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</title><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Nielsen, Steve O. ; Lopez, Carlos F. ; Ivanov, Ivaylo ; Moore, Preston B. ; Shelley, John C. ; Klein, Michael L.</creator><creatorcontrib>Nielsen, Steve O. ; Lopez, Carlos F. ; Ivanov, Ivaylo ; Moore, Preston B. ; Shelley, John C. ; Klein, Michael L.</creatorcontrib><description>Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl- sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar ( L α ) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L α -to-inverse hexagonal ( H II) peptide-induced phase transition.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.104.040311</identifier><identifier>PMID: 15454415</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Biophysical Theory and Modeling</subject><ispartof>Biophysical journal, 2004-10, Vol.87 (4), p.2107-2115</ispartof><rights>2004 The Biophysical Society</rights><rights>Copyright © 2004, Biophysical Society 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304638/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1529/biophysj.104.040311$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids></links><search><creatorcontrib>Nielsen, Steve O.</creatorcontrib><creatorcontrib>Lopez, Carlos F.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo</creatorcontrib><creatorcontrib>Moore, Preston B.</creatorcontrib><creatorcontrib>Shelley, John C.</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><title>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L α -to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</title><title>Biophysical journal</title><description>Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl- sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar ( L α ) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L α -to-inverse hexagonal ( H II) peptide-induced phase transition.</description><subject>Biophysical Theory and Modeling</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpVkU1uE0EQhVsIREzgBGz6AmP6dzxegIQMhEiOiESybtV0V8cVebpH3WNLPgAH4iKciQmGBasnVb33qVSPsbdSLKVV63c95XF3qo9LKcxSGKGlfMYW0hrVCNG1z9lCCNE22qztBXtV66MQUlkhX7KL2WSNkXbBftwVSHXAoZ8V-S2OEwVsrlM4eAx8SyMF_j2XidIDhxT4DfodJKoDz5Fv-a-fvJny7D9imebA7Q4q8j9Qmignfl-fkpsMpWJzVYASv8l79Ic9FP7plGAgX1-zFxH2Fd_81Ut2_-Xz3eZrs_12db35uG1QtWZqopdmHW3bWy-iCRr12iuIYDuPqpMGOm1Mu1p1UZmwElavVAAfo0LobRu1vmQfztzx0A8YPKapwN6NhQYoJ5eB3P-bRDv3kI9OamFa3c2A92cAzlceCYurnjDNr6KCfnIhk5PCPfXj_vUzD4w796N_AyE9iTw</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Nielsen, Steve O.</creator><creator>Lopez, Carlos F.</creator><creator>Ivanov, Ivaylo</creator><creator>Moore, Preston B.</creator><creator>Shelley, John C.</creator><creator>Klein, Michael L.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>5PM</scope></search><sort><creationdate>20041001</creationdate><title>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L α -to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</title><author>Nielsen, Steve O. ; Lopez, Carlos F. ; Ivanov, Ivaylo ; Moore, Preston B. ; Shelley, John C. ; Klein, Michael L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e264t-fc149f56b5c0f4d3e39c2afa58ce2814a83446778f24d705372dacff2eab56f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Biophysical Theory and Modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nielsen, Steve O.</creatorcontrib><creatorcontrib>Lopez, Carlos F.</creatorcontrib><creatorcontrib>Ivanov, Ivaylo</creatorcontrib><creatorcontrib>Moore, Preston B.</creatorcontrib><creatorcontrib>Shelley, John C.</creatorcontrib><creatorcontrib>Klein, Michael L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nielsen, Steve O.</au><au>Lopez, Carlos F.</au><au>Ivanov, Ivaylo</au><au>Moore, Preston B.</au><au>Shelley, John C.</au><au>Klein, Michael L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L α -to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics</atitle><jtitle>Biophysical journal</jtitle><date>2004-10-01</date><risdate>2004</risdate><volume>87</volume><issue>4</issue><spage>2107</spage><epage>2115</epage><pages>2107-2115</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Molecular dynamics results are presented for a coarse-grain model of 1,2-di-n-alkanoyl- sn-glycero-3-phosphocholine, water, and a capped cylindrical model of a transmembrane peptide. We first demonstrate that different alkanoyl-length lipids are miscible in the liquid-disordered lamellar ( L α ) phase. The transmembrane peptide is constructed of hydrophobic sites with hydrophilic caps. The hydrophobic length of the peptide is smaller than the hydrophobic thickness of a bilayer consisting of an equal mixture of long and short alkanoyl tail lipids. When incorporated into the membrane, a meniscus forms in the vicinity of the peptide and the surrounding area is enriched in the short lipid. The meniscus region draws water into it. In the regions that are depleted of water, the bilayers can fuse. The lipid headgroups then rearrange to solvate the newly formed water pores, resulting in an inverted phase. This mechanism appears to be a viable pathway for the experimentally observed L α -to-inverse hexagonal ( H II) peptide-induced phase transition.</abstract><pub>Elsevier Inc</pub><pmid>15454415</pmid><doi>10.1529/biophysj.104.040311</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2004-10, Vol.87 (4), p.2107-2115
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304638
source Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biophysical Theory and Modeling
title Transmembrane Peptide-Induced Lipid Sorting and Mechanism of L α -to-Inverted Phase Transition Using Coarse-Grain Molecular Dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmembrane%20Peptide-Induced%20Lipid%20Sorting%20and%20Mechanism%20of%20L%20%CE%B1%20-to-Inverted%20Phase%20Transition%20Using%20Coarse-Grain%20Molecular%20Dynamics&rft.jtitle=Biophysical%20journal&rft.au=Nielsen,%20Steve%20O.&rft.date=2004-10-01&rft.volume=87&rft.issue=4&rft.spage=2107&rft.epage=2115&rft.pages=2107-2115&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.104.040311&rft_dat=%3Celsevier_pubme%3ES0006349504736905%3C/elsevier_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/15454415&rft_els_id=S0006349504736905&rfr_iscdi=true