The Density and Refractive Index of Adsorbing Protein Layers

The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO 2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2004-07, Vol.87 (1), p.553-561
1. Verfasser: Vörös, Janos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 561
container_issue 1
container_start_page 553
container_title Biophysical journal
container_volume 87
creator Vörös, Janos
description The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO 2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO 2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces.
doi_str_mv 10.1529/biophysj.103.030072
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349504735407</els_id><sourcerecordid>66682972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-1ecd8a2fd4e8e8d178839805b282b4f7ff68ac5b8e8ec811ec7a18703e6618cc3</originalsourceid><addsrcrecordid>eNp9kVtrGzEQhUVpSZy0vyAQlj70bd2RtCtpoS2EXNqAoaWkz0IrzcYytuRKaxP_-yjYTS8PfRLMfOdoZg4hZxSmtGXd-97H9XyXF1MKfAocQLIXZELbhtUASrwkEwAQNW-69pic5LwAoKwFekSOi76BRqkJ-XA3x-oKQ_bjrjLBVd9xSMaOfovVbXD4UMWhunA5pt6H--pbiiP6UM3MDlN-TV4NZpnxzeE9JT9uru8uv9Szr59vLy9mtW07NdYUrVOGDa5BhcpRqRTvFLQ9U6xvBjkMQhnb9qWJVtGCS0OVBI5CUGUtPyWf9r7rTb9CZzGMySz1OvmVSTsdjdd_d4Kf6_u41ZRDw6UoBu8OBin-3GAe9cpni8ulCRg3WQshFOskK-Dbf8BF3KRQltOMtpI2Ujy58T1kU8w54fA8CQX9FI3-FU0pcL2PpqjO_1zit-aQRQE-7gEsp9x6TDpbj8Gi8wntqF30__3gEcQhoac</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215714766</pqid></control><display><type>article</type><title>The Density and Refractive Index of Adsorbing Protein Layers</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Vörös, Janos</creator><creatorcontrib>Vörös, Janos</creatorcontrib><description>The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO 2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO 2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.103.030072</identifier><identifier>PMID: 15240488</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adsorption ; Albumins - chemistry ; Animals ; Density ; Fibrinogen - chemistry ; Humans ; Hydrophobic and Hydrophilic Interactions ; Immunoglobulin gamma-Chains - chemistry ; Molecular biology ; Muramidase - chemistry ; Protein Denaturation ; Proteins ; Refractometry ; Solvents - chemistry ; Spectrum Analysis ; Water - chemistry ; X-Rays</subject><ispartof>Biophysical journal, 2004-07, Vol.87 (1), p.553-561</ispartof><rights>2004 The Biophysical Society</rights><rights>Copyright Biophysical Society Jul 2004</rights><rights>Copyright © 2004, Biophysical Society 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-1ecd8a2fd4e8e8d178839805b282b4f7ff68ac5b8e8ec811ec7a18703e6618cc3</citedby><cites>FETCH-LOGICAL-c598t-1ecd8a2fd4e8e8d178839805b282b4f7ff68ac5b8e8ec811ec7a18703e6618cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304376/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349504735407$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15240488$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vörös, Janos</creatorcontrib><title>The Density and Refractive Index of Adsorbing Protein Layers</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO 2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO 2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces.</description><subject>Adsorption</subject><subject>Albumins - chemistry</subject><subject>Animals</subject><subject>Density</subject><subject>Fibrinogen - chemistry</subject><subject>Humans</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Immunoglobulin gamma-Chains - chemistry</subject><subject>Molecular biology</subject><subject>Muramidase - chemistry</subject><subject>Protein Denaturation</subject><subject>Proteins</subject><subject>Refractometry</subject><subject>Solvents - chemistry</subject><subject>Spectrum Analysis</subject><subject>Water - chemistry</subject><subject>X-Rays</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kVtrGzEQhUVpSZy0vyAQlj70bd2RtCtpoS2EXNqAoaWkz0IrzcYytuRKaxP_-yjYTS8PfRLMfOdoZg4hZxSmtGXd-97H9XyXF1MKfAocQLIXZELbhtUASrwkEwAQNW-69pic5LwAoKwFekSOi76BRqkJ-XA3x-oKQ_bjrjLBVd9xSMaOfovVbXD4UMWhunA5pt6H--pbiiP6UM3MDlN-TV4NZpnxzeE9JT9uru8uv9Szr59vLy9mtW07NdYUrVOGDa5BhcpRqRTvFLQ9U6xvBjkMQhnb9qWJVtGCS0OVBI5CUGUtPyWf9r7rTb9CZzGMySz1OvmVSTsdjdd_d4Kf6_u41ZRDw6UoBu8OBin-3GAe9cpni8ulCRg3WQshFOskK-Dbf8BF3KRQltOMtpI2Ujy58T1kU8w54fA8CQX9FI3-FU0pcL2PpqjO_1zit-aQRQE-7gEsp9x6TDpbj8Gi8wntqF30__3gEcQhoac</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Vörös, Janos</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040701</creationdate><title>The Density and Refractive Index of Adsorbing Protein Layers</title><author>Vörös, Janos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-1ecd8a2fd4e8e8d178839805b282b4f7ff68ac5b8e8ec811ec7a18703e6618cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adsorption</topic><topic>Albumins - chemistry</topic><topic>Animals</topic><topic>Density</topic><topic>Fibrinogen - chemistry</topic><topic>Humans</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Immunoglobulin gamma-Chains - chemistry</topic><topic>Molecular biology</topic><topic>Muramidase - chemistry</topic><topic>Protein Denaturation</topic><topic>Proteins</topic><topic>Refractometry</topic><topic>Solvents - chemistry</topic><topic>Spectrum Analysis</topic><topic>Water - chemistry</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vörös, Janos</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vörös, Janos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Density and Refractive Index of Adsorbing Protein Layers</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2004-07-01</date><risdate>2004</risdate><volume>87</volume><issue>1</issue><spage>553</spage><epage>561</epage><pages>553-561</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO 2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO 2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15240488</pmid><doi>10.1529/biophysj.103.030072</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2004-07, Vol.87 (1), p.553-561
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304376
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adsorption
Albumins - chemistry
Animals
Density
Fibrinogen - chemistry
Humans
Hydrophobic and Hydrophilic Interactions
Immunoglobulin gamma-Chains - chemistry
Molecular biology
Muramidase - chemistry
Protein Denaturation
Proteins
Refractometry
Solvents - chemistry
Spectrum Analysis
Water - chemistry
X-Rays
title The Density and Refractive Index of Adsorbing Protein Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Density%20and%20Refractive%20Index%20of%20Adsorbing%20Protein%20Layers&rft.jtitle=Biophysical%20journal&rft.au=V%C3%B6r%C3%B6s,%20Janos&rft.date=2004-07-01&rft.volume=87&rft.issue=1&rft.spage=553&rft.epage=561&rft.pages=553-561&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.103.030072&rft_dat=%3Cproquest_pubme%3E66682972%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215714766&rft_id=info:pmid/15240488&rft_els_id=S0006349504735407&rfr_iscdi=true