Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching

Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has been no comprehensive analysis or systematic approach to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2004-06, Vol.86 (6), p.3473-3495
Hauptverfasser: Sprague, Brian L., Pego, Robert L., Stavreva, Diana A., McNally, James G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3495
container_issue 6
container_start_page 3473
container_title Biophysical journal
container_volume 86
creator Sprague, Brian L.
Pego, Robert L.
Stavreva, Diana A.
McNally, James G.
description Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has been no comprehensive analysis or systematic approach to serve as a guide for extracting binding information from an arbitrary FRAP curve. Here we present a complete solution to the FRAP reaction-diffusion equations for either single or multiple independent binding interactions, and then relate our solution to the various idealized cases. This yields a coherent approach to extract binding information from FRAP data which we have applied to the question of transcription factor mobility in the nucleus. We show that within the nucleus, the glucocorticoid receptor is transiently bound to a single state, with each molecule binding on average 65 sites per second. This rapid sampling is likely to be important in finding a specific promoter target sequence. Further we show that this predominant binding state is not the nuclear matrix, as some studies have suggested. We illustrate how our analysis provides several self-consistency checks on a FRAP fit. We also define constraints on what can be estimated from FRAP data, show that diffusion should play a key role in many FRAP recoveries, and provide tools to test its contribution. Overall our approach establishes a more general framework to assess the role of diffusion, the number of binding states, and the binding constants underlying a FRAP recovery.
doi_str_mv 10.1529/biophysj.103.026765
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349504743921</els_id><sourcerecordid>665449661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c548t-758a69e00b23e64d5478e4be52d5cf56d8f0fb57d86e921f0ab1bb0912a9d18d3</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EotPCL0BCEQt2Ga6d2HEWIJWKQtVKrVC7tvy46XiUiQc7GSn_HlczBcqiK0u-3zn3cQh5R2FJOWs_GR-2qzmtlxSqJTDRCP6CLCivWQkgxUuyAABRVnXLj8hxSmsAyjjQ1-SIcipbWcsFuTwddD8nn4rQFV_94PxwX_xEbUcfhlSYuTjvpxAxWRws5ooNO4xzobsRY3GzCmMwfcZXWfeGvOp0n_Dt4T0hd-ffbs9-lFfX3y_OTq9Ky2s5lg2XWrQIYFiFona8biTWBjlz3HZcONlBZ3jjpMCW0Q60ocZAS5luHZWuOiFf9r7byWzQ5cnGqHu1jX6j46yC9uppZfArdR92ilZQM15lg48Hgxh-TZhGtfF5wb7XA4YpqYZBbsdFBj_8B67DFPPFkmKUNyB5SzNU7SEbQ0oRuz-TUFAPSanHpPJHpfZJZdX7f5f4qzlEk4HPewDzKXceo0rWP4TgfEQ7Khf8sw1-A865p9s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215708591</pqid></control><display><type>article</type><title>Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sprague, Brian L. ; Pego, Robert L. ; Stavreva, Diana A. ; McNally, James G.</creator><creatorcontrib>Sprague, Brian L. ; Pego, Robert L. ; Stavreva, Diana A. ; McNally, James G.</creatorcontrib><description>Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has been no comprehensive analysis or systematic approach to serve as a guide for extracting binding information from an arbitrary FRAP curve. Here we present a complete solution to the FRAP reaction-diffusion equations for either single or multiple independent binding interactions, and then relate our solution to the various idealized cases. This yields a coherent approach to extract binding information from FRAP data which we have applied to the question of transcription factor mobility in the nucleus. We show that within the nucleus, the glucocorticoid receptor is transiently bound to a single state, with each molecule binding on average 65 sites per second. This rapid sampling is likely to be important in finding a specific promoter target sequence. Further we show that this predominant binding state is not the nuclear matrix, as some studies have suggested. We illustrate how our analysis provides several self-consistency checks on a FRAP fit. We also define constraints on what can be estimated from FRAP data, show that diffusion should play a key role in many FRAP recoveries, and provide tools to test its contribution. Overall our approach establishes a more general framework to assess the role of diffusion, the number of binding states, and the binding constants underlying a FRAP recovery.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.103.026765</identifier><identifier>PMID: 15189848</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Animals ; Atoms &amp; subatomic particles ; Biophysical Theory and Modeling ; Biophysics ; Cell Nucleus - metabolism ; Cells ; Cloning, Molecular ; Diffusion ; Fluorescence Recovery After Photobleaching ; Green Fluorescent Proteins - metabolism ; Image Processing, Computer-Assisted ; Mice ; Molecules ; Receptors, Glucocorticoid - metabolism ; Tumor Cells, Cultured</subject><ispartof>Biophysical journal, 2004-06, Vol.86 (6), p.3473-3495</ispartof><rights>2004 The Biophysical Society</rights><rights>Copyright Biophysical Society Jun 2004</rights><rights>Copyright © 2004, Biophysical Society 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c548t-758a69e00b23e64d5478e4be52d5cf56d8f0fb57d86e921f0ab1bb0912a9d18d3</citedby><cites>FETCH-LOGICAL-c548t-758a69e00b23e64d5478e4be52d5cf56d8f0fb57d86e921f0ab1bb0912a9d18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304253/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349504743921$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15189848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sprague, Brian L.</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><creatorcontrib>Stavreva, Diana A.</creatorcontrib><creatorcontrib>McNally, James G.</creatorcontrib><title>Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has been no comprehensive analysis or systematic approach to serve as a guide for extracting binding information from an arbitrary FRAP curve. Here we present a complete solution to the FRAP reaction-diffusion equations for either single or multiple independent binding interactions, and then relate our solution to the various idealized cases. This yields a coherent approach to extract binding information from FRAP data which we have applied to the question of transcription factor mobility in the nucleus. We show that within the nucleus, the glucocorticoid receptor is transiently bound to a single state, with each molecule binding on average 65 sites per second. This rapid sampling is likely to be important in finding a specific promoter target sequence. Further we show that this predominant binding state is not the nuclear matrix, as some studies have suggested. We illustrate how our analysis provides several self-consistency checks on a FRAP fit. We also define constraints on what can be estimated from FRAP data, show that diffusion should play a key role in many FRAP recoveries, and provide tools to test its contribution. Overall our approach establishes a more general framework to assess the role of diffusion, the number of binding states, and the binding constants underlying a FRAP recovery.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Atoms &amp; subatomic particles</subject><subject>Biophysical Theory and Modeling</subject><subject>Biophysics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cells</subject><subject>Cloning, Molecular</subject><subject>Diffusion</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Image Processing, Computer-Assisted</subject><subject>Mice</subject><subject>Molecules</subject><subject>Receptors, Glucocorticoid - metabolism</subject><subject>Tumor Cells, Cultured</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtv1DAUhS0EotPCL0BCEQt2Ga6d2HEWIJWKQtVKrVC7tvy46XiUiQc7GSn_HlczBcqiK0u-3zn3cQh5R2FJOWs_GR-2qzmtlxSqJTDRCP6CLCivWQkgxUuyAABRVnXLj8hxSmsAyjjQ1-SIcipbWcsFuTwddD8nn4rQFV_94PxwX_xEbUcfhlSYuTjvpxAxWRws5ooNO4xzobsRY3GzCmMwfcZXWfeGvOp0n_Dt4T0hd-ffbs9-lFfX3y_OTq9Ky2s5lg2XWrQIYFiFona8biTWBjlz3HZcONlBZ3jjpMCW0Q60ocZAS5luHZWuOiFf9r7byWzQ5cnGqHu1jX6j46yC9uppZfArdR92ilZQM15lg48Hgxh-TZhGtfF5wb7XA4YpqYZBbsdFBj_8B67DFPPFkmKUNyB5SzNU7SEbQ0oRuz-TUFAPSanHpPJHpfZJZdX7f5f4qzlEk4HPewDzKXceo0rWP4TgfEQ7Khf8sw1-A865p9s</recordid><startdate>20040601</startdate><enddate>20040601</enddate><creator>Sprague, Brian L.</creator><creator>Pego, Robert L.</creator><creator>Stavreva, Diana A.</creator><creator>McNally, James G.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040601</creationdate><title>Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching</title><author>Sprague, Brian L. ; Pego, Robert L. ; Stavreva, Diana A. ; McNally, James G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c548t-758a69e00b23e64d5478e4be52d5cf56d8f0fb57d86e921f0ab1bb0912a9d18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Atoms &amp; subatomic particles</topic><topic>Biophysical Theory and Modeling</topic><topic>Biophysics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cells</topic><topic>Cloning, Molecular</topic><topic>Diffusion</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Image Processing, Computer-Assisted</topic><topic>Mice</topic><topic>Molecules</topic><topic>Receptors, Glucocorticoid - metabolism</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprague, Brian L.</creatorcontrib><creatorcontrib>Pego, Robert L.</creatorcontrib><creatorcontrib>Stavreva, Diana A.</creatorcontrib><creatorcontrib>McNally, James G.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprague, Brian L.</au><au>Pego, Robert L.</au><au>Stavreva, Diana A.</au><au>McNally, James G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2004-06-01</date><risdate>2004</risdate><volume>86</volume><issue>6</issue><spage>3473</spage><epage>3495</epage><pages>3473-3495</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has been no comprehensive analysis or systematic approach to serve as a guide for extracting binding information from an arbitrary FRAP curve. Here we present a complete solution to the FRAP reaction-diffusion equations for either single or multiple independent binding interactions, and then relate our solution to the various idealized cases. This yields a coherent approach to extract binding information from FRAP data which we have applied to the question of transcription factor mobility in the nucleus. We show that within the nucleus, the glucocorticoid receptor is transiently bound to a single state, with each molecule binding on average 65 sites per second. This rapid sampling is likely to be important in finding a specific promoter target sequence. Further we show that this predominant binding state is not the nuclear matrix, as some studies have suggested. We illustrate how our analysis provides several self-consistency checks on a FRAP fit. We also define constraints on what can be estimated from FRAP data, show that diffusion should play a key role in many FRAP recoveries, and provide tools to test its contribution. Overall our approach establishes a more general framework to assess the role of diffusion, the number of binding states, and the binding constants underlying a FRAP recovery.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15189848</pmid><doi>10.1529/biophysj.103.026765</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2004-06, Vol.86 (6), p.3473-3495
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1304253
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Algorithms
Animals
Atoms & subatomic particles
Biophysical Theory and Modeling
Biophysics
Cell Nucleus - metabolism
Cells
Cloning, Molecular
Diffusion
Fluorescence Recovery After Photobleaching
Green Fluorescent Proteins - metabolism
Image Processing, Computer-Assisted
Mice
Molecules
Receptors, Glucocorticoid - metabolism
Tumor Cells, Cultured
title Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A06%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Binding%20Reactions%20by%20Fluorescence%20Recovery%20after%20Photobleaching&rft.jtitle=Biophysical%20journal&rft.au=Sprague,%20Brian%20L.&rft.date=2004-06-01&rft.volume=86&rft.issue=6&rft.spage=3473&rft.epage=3495&rft.pages=3473-3495&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.103.026765&rft_dat=%3Cproquest_pubme%3E665449661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215708591&rft_id=info:pmid/15189848&rft_els_id=S0006349504743921&rfr_iscdi=true