Mechanism of DNA Compaction by Yeast Mitochondrial Protein Abf2p
We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2004-03, Vol.86 (3), p.1632-1639 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1639 |
---|---|
container_issue | 3 |
container_start_page | 1632 |
container_title | Biophysical journal |
container_volume | 86 |
creator | Friddle, Raymond W. Klare, Jennifer E. Martin, Shelley S. Corzett, Michelle Balhorn, Rod Baldwin, Enoch P. Baskin, Ronald J. Noy, Aleksandr |
description | We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At a high concentration of Abf2p DNA collapses into a tight nucleoprotein complex. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of Abf2p. We also derived a polymer statistical mechanics model that provides a quantitative description of compaction observed in our experiments. This model shows that sharp bends in the DNA backbone are often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for Abf2p. These studies indicate that Abf2p compacts DNA through a simple mechanism that involves bending of the DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance and organization. |
doi_str_mv | 10.1016/S0006-3495(04)74231-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1303998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349504742319</els_id><sourcerecordid>665099201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-3d0d8953a0ab4b849143e1a60c0dbba5d8f5ebab2b722cd62e36aecf3576275a3</originalsourceid><addsrcrecordid>eNqFkUlvFDEQhS0EIpOBnwBqcUDh0FDeutuXwGhYpQSQgAMny0s146jbHuyeSPn3dDKjsFw41aG-elWvHiGPKDynQJsXXwCgqblQ8gTEs1YwTmt1hyyoFKwG6Jq7ZHGLHJHjUi4AKJNA75MjKpQCoWBBXp2j25gYylilvnr9cVWt07g1bgopVvaq-o6mTNV5mJLbpOhzMEP1OacJQ6xWtmfbB-Reb4aCDw91Sb69ffN1_b4--_Tuw3p1Vjspm6nmHnynJDdgrLCdUFRwpKYBB95aI33XS7TGMtsy5nzDkDcGXc9l27BWGr4kp3vd7c6O6B3GKZtBb3MYTb7SyQT9dyeGjf6RLjXlwJXqZoGnB4Gcfu6wTHoMxeEwmIhpV3RLm65lM7wkT_4BL9Iux9mcZlS2lAtOZ0juIZdTKRn720so6OuA9E1A-vr7GoS-CUiree7xnzZ-Tx0SmYGXewDnZ14GzLq4gNGhDxndpH0K_1nxCxtbn7I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215713431</pqid></control><display><type>article</type><title>Mechanism of DNA Compaction by Yeast Mitochondrial Protein Abf2p</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Friddle, Raymond W. ; Klare, Jennifer E. ; Martin, Shelley S. ; Corzett, Michelle ; Balhorn, Rod ; Baldwin, Enoch P. ; Baskin, Ronald J. ; Noy, Aleksandr</creator><creatorcontrib>Friddle, Raymond W. ; Klare, Jennifer E. ; Martin, Shelley S. ; Corzett, Michelle ; Balhorn, Rod ; Baldwin, Enoch P. ; Baskin, Ronald J. ; Noy, Aleksandr</creatorcontrib><description>We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At a high concentration of Abf2p DNA collapses into a tight nucleoprotein complex. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of Abf2p. We also derived a polymer statistical mechanics model that provides a quantitative description of compaction observed in our experiments. This model shows that sharp bends in the DNA backbone are often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for Abf2p. These studies indicate that Abf2p compacts DNA through a simple mechanism that involves bending of the DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance and organization.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(04)74231-9</identifier><identifier>PMID: 14990490</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - ultrastructure ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - ultrastructure ; Macromolecular Substances ; Microscopy ; Microscopy, Atomic Force ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - ultrastructure ; Models, Chemical ; Models, Molecular ; Molecules ; Nucleic Acid Conformation ; Nucleic Acids ; Protein Binding ; Proteins ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - ultrastructure ; Transcription Factors - chemistry ; Transcription Factors - ultrastructure ; Yeast</subject><ispartof>Biophysical journal, 2004-03, Vol.86 (3), p.1632-1639</ispartof><rights>2004 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 2004</rights><rights>Copyright © 2004, Biophysical Society 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-3d0d8953a0ab4b849143e1a60c0dbba5d8f5ebab2b722cd62e36aecf3576275a3</citedby><cites>FETCH-LOGICAL-c556t-3d0d8953a0ab4b849143e1a60c0dbba5d8f5ebab2b722cd62e36aecf3576275a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303998/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(04)74231-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14990490$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friddle, Raymond W.</creatorcontrib><creatorcontrib>Klare, Jennifer E.</creatorcontrib><creatorcontrib>Martin, Shelley S.</creatorcontrib><creatorcontrib>Corzett, Michelle</creatorcontrib><creatorcontrib>Balhorn, Rod</creatorcontrib><creatorcontrib>Baldwin, Enoch P.</creatorcontrib><creatorcontrib>Baskin, Ronald J.</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><title>Mechanism of DNA Compaction by Yeast Mitochondrial Protein Abf2p</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At a high concentration of Abf2p DNA collapses into a tight nucleoprotein complex. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of Abf2p. We also derived a polymer statistical mechanics model that provides a quantitative description of compaction observed in our experiments. This model shows that sharp bends in the DNA backbone are often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for Abf2p. These studies indicate that Abf2p compacts DNA through a simple mechanism that involves bending of the DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance and organization.</description><subject>Binding Sites</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - ultrastructure</subject><subject>Macromolecular Substances</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - ultrastructure</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic Acids</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - ultrastructure</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - ultrastructure</subject><subject>Yeast</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUlvFDEQhS0EIpOBnwBqcUDh0FDeutuXwGhYpQSQgAMny0s146jbHuyeSPn3dDKjsFw41aG-elWvHiGPKDynQJsXXwCgqblQ8gTEs1YwTmt1hyyoFKwG6Jq7ZHGLHJHjUi4AKJNA75MjKpQCoWBBXp2j25gYylilvnr9cVWt07g1bgopVvaq-o6mTNV5mJLbpOhzMEP1OacJQ6xWtmfbB-Reb4aCDw91Sb69ffN1_b4--_Tuw3p1Vjspm6nmHnynJDdgrLCdUFRwpKYBB95aI33XS7TGMtsy5nzDkDcGXc9l27BWGr4kp3vd7c6O6B3GKZtBb3MYTb7SyQT9dyeGjf6RLjXlwJXqZoGnB4Gcfu6wTHoMxeEwmIhpV3RLm65lM7wkT_4BL9Iux9mcZlS2lAtOZ0juIZdTKRn720so6OuA9E1A-vr7GoS-CUiree7xnzZ-Tx0SmYGXewDnZ14GzLq4gNGhDxndpH0K_1nxCxtbn7I</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Friddle, Raymond W.</creator><creator>Klare, Jennifer E.</creator><creator>Martin, Shelley S.</creator><creator>Corzett, Michelle</creator><creator>Balhorn, Rod</creator><creator>Baldwin, Enoch P.</creator><creator>Baskin, Ronald J.</creator><creator>Noy, Aleksandr</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040301</creationdate><title>Mechanism of DNA Compaction by Yeast Mitochondrial Protein Abf2p</title><author>Friddle, Raymond W. ; Klare, Jennifer E. ; Martin, Shelley S. ; Corzett, Michelle ; Balhorn, Rod ; Baldwin, Enoch P. ; Baskin, Ronald J. ; Noy, Aleksandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-3d0d8953a0ab4b849143e1a60c0dbba5d8f5ebab2b722cd62e36aecf3576275a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Binding Sites</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - ultrastructure</topic><topic>Macromolecular Substances</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - ultrastructure</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic Acids</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - ultrastructure</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - ultrastructure</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friddle, Raymond W.</creatorcontrib><creatorcontrib>Klare, Jennifer E.</creatorcontrib><creatorcontrib>Martin, Shelley S.</creatorcontrib><creatorcontrib>Corzett, Michelle</creatorcontrib><creatorcontrib>Balhorn, Rod</creatorcontrib><creatorcontrib>Baldwin, Enoch P.</creatorcontrib><creatorcontrib>Baskin, Ronald J.</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friddle, Raymond W.</au><au>Klare, Jennifer E.</au><au>Martin, Shelley S.</au><au>Corzett, Michelle</au><au>Balhorn, Rod</au><au>Baldwin, Enoch P.</au><au>Baskin, Ronald J.</au><au>Noy, Aleksandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of DNA Compaction by Yeast Mitochondrial Protein Abf2p</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>86</volume><issue>3</issue><spage>1632</spage><epage>1639</epage><pages>1632-1639</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We used high-resolution atomic force microscopy to image the compaction of linear and circular DNA by the yeast mitochondrial protein Abf2p, which plays a major role in packaging mitochondrial DNA. Atomic force microscopy images show that protein binding induces drastic bends in the DNA backbone for both linear and circular DNA. At a high concentration of Abf2p DNA collapses into a tight nucleoprotein complex. We quantified the compaction of linear DNA by measuring the end-to-end distance of the DNA molecule at increasing concentrations of Abf2p. We also derived a polymer statistical mechanics model that provides a quantitative description of compaction observed in our experiments. This model shows that sharp bends in the DNA backbone are often sufficient to cause DNA compaction. Comparison of our model with the experimental data showed excellent quantitative correlation and allowed us to determine binding characteristics for Abf2p. These studies indicate that Abf2p compacts DNA through a simple mechanism that involves bending of the DNA backbone. We discuss the implications of such a mechanism for mitochondrial DNA maintenance and organization.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14990490</pmid><doi>10.1016/S0006-3495(04)74231-9</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2004-03, Vol.86 (3), p.1632-1639 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1303998 |
source | MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals Complete; PubMed Central; EZB Electronic Journals Library |
subjects | Binding Sites Computer Simulation Deoxyribonucleic acid DNA DNA - chemistry DNA - ultrastructure DNA-Binding Proteins - chemistry DNA-Binding Proteins - ultrastructure Macromolecular Substances Microscopy Microscopy, Atomic Force Mitochondrial Proteins - chemistry Mitochondrial Proteins - ultrastructure Models, Chemical Models, Molecular Molecules Nucleic Acid Conformation Nucleic Acids Protein Binding Proteins Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - ultrastructure Transcription Factors - chemistry Transcription Factors - ultrastructure Yeast |
title | Mechanism of DNA Compaction by Yeast Mitochondrial Protein Abf2p |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A55%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20DNA%20Compaction%20by%20Yeast%20Mitochondrial%20Protein%20Abf2p&rft.jtitle=Biophysical%20journal&rft.au=Friddle,%20Raymond%20W.&rft.date=2004-03-01&rft.volume=86&rft.issue=3&rft.spage=1632&rft.epage=1639&rft.pages=1632-1639&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(04)74231-9&rft_dat=%3Cproquest_pubme%3E665099201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215713431&rft_id=info:pmid/14990490&rft_els_id=S0006349504742319&rfr_iscdi=true |