Ionic Permeation and Conduction Properties of Neuronal KCNQ2/KCNQ3 Potassium Channels

Heteromeric KCNQ2/3 potassium channels are thought to underlie the M-current, a subthreshold potassium current involved in the regulation of neuronal excitability. KCNQ channel subunits are structurally unique, but it is unknown whether these structural differences result in unique conduction proper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2004-03, Vol.86 (3), p.1454-1469
Hauptverfasser: Prole, David L., Marrion, Neil V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1469
container_issue 3
container_start_page 1454
container_title Biophysical journal
container_volume 86
creator Prole, David L.
Marrion, Neil V.
description Heteromeric KCNQ2/3 potassium channels are thought to underlie the M-current, a subthreshold potassium current involved in the regulation of neuronal excitability. KCNQ channel subunits are structurally unique, but it is unknown whether these structural differences result in unique conduction properties. Heterologously expressed KCNQ2/3 channels showed a permeation sequence of T l + > K + > R b + > N H 4 + ≥ C s + > N a + , while showing a conduction sequence of K + > Tl > N H 4 + ∼ R b + > C s + . A differential contribution of component subunits to the properties of heteromeric KCNQ2/3 channels was demonstrated by studying homomeric KCNQ2 and KCNQ3 channels, which displayed contrasting ionic selectivities. KCNQ2/3 channels did not exhibit an anomalous mole-fraction effect in mixtures of K + and Rb +. However, extreme voltage-dependence of block by external Cs + was indicative of multi-ion pore behavior. Block of KCNQ2/3 channels by external Ba 2+ ions was voltage-independent, demonstrating unusual ionic occupation of the outer pore. Selectivity properties and block of KCNQ2 were altered by mutation of outer pore residues in a manner consistent with the presence of multiple ion-binding sites. KCNQ2/3 channel deactivation kinetics were slowed exclusively by Rb +, whereas activation of KCNQ2/3 channels was altered by a variety of external permeant ions. These data indicate that KCNQ2/3 channels are multi-ion pores which exhibit distinctive mechanisms of ion conduction and gating.
doi_str_mv 10.1016/S0006-3495(04)74214-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1303981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349504742149</els_id><sourcerecordid>665099181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-a386d3e4488f1fcd2a7df3d72efad760c4602ed90629aade853822b5dddfb8e83</originalsourceid><addsrcrecordid>eNqFkUtv1DAURi0EotPCTwBFLBBdpL1-Jc4GhCIKVasyCLq2PPYNdZXYg51U6r8n81B5bOqFLcvnftf2IeQVhRMKtDr9DgBVyUUj34E4rgWjomyekAWVgpUAqnpKFg_IATnM-RaAMgn0OTmgomlA1HxBrs9j8LZYYhrQjD6GwgRXtDG4yW63yxTXmEaPuYhdcYVTisH0xUV79Y2dbmZeLONocvbTULQ3JgTs8wvyrDN9xpf79Yhcn3360X4pL79-Pm8_XpZWMjqWhqvKcRRCqY521jFTu467mmFnXF2BFRUwdA1UrDHGoZJcMbaSzrlupVDxI_J-l7ueVgM6i2FMptfr5AeT7nU0Xv97EvyN_hnvNOXAG0XngLf7gBR_TZhHPfhsse9NwDhlXdNKNXyGHwNpPQ8Bcgbf_AfexinNX5Y1o7KmQvJ6huQOsinmnLB7uDIFvdGrt3r1xp0Gobd6dTPXvf77vX-q9j5n4MMOmCXgnceks_UYLDqf0I7aRf9Ii9_GgLUI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215714537</pqid></control><display><type>article</type><title>Ionic Permeation and Conduction Properties of Neuronal KCNQ2/KCNQ3 Potassium Channels</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Prole, David L. ; Marrion, Neil V.</creator><creatorcontrib>Prole, David L. ; Marrion, Neil V.</creatorcontrib><description>Heteromeric KCNQ2/3 potassium channels are thought to underlie the M-current, a subthreshold potassium current involved in the regulation of neuronal excitability. KCNQ channel subunits are structurally unique, but it is unknown whether these structural differences result in unique conduction properties. Heterologously expressed KCNQ2/3 channels showed a permeation sequence of T l + &gt; K + &gt; R b + &gt; N H 4 + ≥ C s + &gt; N a + , while showing a conduction sequence of K + &gt; Tl &gt; N H 4 + ∼ R b + &gt; C s + . A differential contribution of component subunits to the properties of heteromeric KCNQ2/3 channels was demonstrated by studying homomeric KCNQ2 and KCNQ3 channels, which displayed contrasting ionic selectivities. KCNQ2/3 channels did not exhibit an anomalous mole-fraction effect in mixtures of K + and Rb +. However, extreme voltage-dependence of block by external Cs + was indicative of multi-ion pore behavior. Block of KCNQ2/3 channels by external Ba 2+ ions was voltage-independent, demonstrating unusual ionic occupation of the outer pore. Selectivity properties and block of KCNQ2 were altered by mutation of outer pore residues in a manner consistent with the presence of multiple ion-binding sites. KCNQ2/3 channel deactivation kinetics were slowed exclusively by Rb +, whereas activation of KCNQ2/3 channels was altered by a variety of external permeant ions. These data indicate that KCNQ2/3 channels are multi-ion pores which exhibit distinctive mechanisms of ion conduction and gating.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(04)74214-9</identifier><identifier>PMID: 14990473</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Barium - pharmacology ; Cell Line ; Cell Membrane Permeability - drug effects ; Cell Membrane Permeability - physiology ; Cellular biology ; Cesium - pharmacology ; Channels, Receptors, and Transporters ; Dose-Response Relationship, Drug ; Electric Conductivity ; Humans ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Ions ; KCNQ2 Potassium Channel ; KCNQ3 Potassium Channel ; Kidney - drug effects ; Kidney - embryology ; Kidney - physiology ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Molecular biology ; Neurological disorders ; Neurons - drug effects ; Neurons - physiology ; Potassium ; Potassium - pharmacology ; Potassium Channels - chemistry ; Potassium Channels - physiology ; Potassium Channels, Voltage-Gated ; Structure-Activity Relationship</subject><ispartof>Biophysical journal, 2004-03, Vol.86 (3), p.1454-1469</ispartof><rights>2004 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 2004</rights><rights>Copyright © 2004, Biophysical Society 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-a386d3e4488f1fcd2a7df3d72efad760c4602ed90629aade853822b5dddfb8e83</citedby><cites>FETCH-LOGICAL-c521t-a386d3e4488f1fcd2a7df3d72efad760c4602ed90629aade853822b5dddfb8e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1303981/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(04)74214-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,3554,27933,27934,46004,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14990473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prole, David L.</creatorcontrib><creatorcontrib>Marrion, Neil V.</creatorcontrib><title>Ionic Permeation and Conduction Properties of Neuronal KCNQ2/KCNQ3 Potassium Channels</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Heteromeric KCNQ2/3 potassium channels are thought to underlie the M-current, a subthreshold potassium current involved in the regulation of neuronal excitability. KCNQ channel subunits are structurally unique, but it is unknown whether these structural differences result in unique conduction properties. Heterologously expressed KCNQ2/3 channels showed a permeation sequence of T l + &gt; K + &gt; R b + &gt; N H 4 + ≥ C s + &gt; N a + , while showing a conduction sequence of K + &gt; Tl &gt; N H 4 + ∼ R b + &gt; C s + . A differential contribution of component subunits to the properties of heteromeric KCNQ2/3 channels was demonstrated by studying homomeric KCNQ2 and KCNQ3 channels, which displayed contrasting ionic selectivities. KCNQ2/3 channels did not exhibit an anomalous mole-fraction effect in mixtures of K + and Rb +. However, extreme voltage-dependence of block by external Cs + was indicative of multi-ion pore behavior. Block of KCNQ2/3 channels by external Ba 2+ ions was voltage-independent, demonstrating unusual ionic occupation of the outer pore. Selectivity properties and block of KCNQ2 were altered by mutation of outer pore residues in a manner consistent with the presence of multiple ion-binding sites. KCNQ2/3 channel deactivation kinetics were slowed exclusively by Rb +, whereas activation of KCNQ2/3 channels was altered by a variety of external permeant ions. These data indicate that KCNQ2/3 channels are multi-ion pores which exhibit distinctive mechanisms of ion conduction and gating.</description><subject>Barium - pharmacology</subject><subject>Cell Line</subject><subject>Cell Membrane Permeability - drug effects</subject><subject>Cell Membrane Permeability - physiology</subject><subject>Cellular biology</subject><subject>Cesium - pharmacology</subject><subject>Channels, Receptors, and Transporters</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Conductivity</subject><subject>Humans</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Ions</subject><subject>KCNQ2 Potassium Channel</subject><subject>KCNQ3 Potassium Channel</subject><subject>Kidney - drug effects</subject><subject>Kidney - embryology</subject><subject>Kidney - physiology</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Molecular biology</subject><subject>Neurological disorders</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Potassium</subject><subject>Potassium - pharmacology</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - physiology</subject><subject>Potassium Channels, Voltage-Gated</subject><subject>Structure-Activity Relationship</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAURi0EotPCTwBFLBBdpL1-Jc4GhCIKVasyCLq2PPYNdZXYg51U6r8n81B5bOqFLcvnftf2IeQVhRMKtDr9DgBVyUUj34E4rgWjomyekAWVgpUAqnpKFg_IATnM-RaAMgn0OTmgomlA1HxBrs9j8LZYYhrQjD6GwgRXtDG4yW63yxTXmEaPuYhdcYVTisH0xUV79Y2dbmZeLONocvbTULQ3JgTs8wvyrDN9xpf79Yhcn3360X4pL79-Pm8_XpZWMjqWhqvKcRRCqY521jFTu467mmFnXF2BFRUwdA1UrDHGoZJcMbaSzrlupVDxI_J-l7ueVgM6i2FMptfr5AeT7nU0Xv97EvyN_hnvNOXAG0XngLf7gBR_TZhHPfhsse9NwDhlXdNKNXyGHwNpPQ8Bcgbf_AfexinNX5Y1o7KmQvJ6huQOsinmnLB7uDIFvdGrt3r1xp0Gobd6dTPXvf77vX-q9j5n4MMOmCXgnceks_UYLDqf0I7aRf9Ii9_GgLUI</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Prole, David L.</creator><creator>Marrion, Neil V.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040301</creationdate><title>Ionic Permeation and Conduction Properties of Neuronal KCNQ2/KCNQ3 Potassium Channels</title><author>Prole, David L. ; Marrion, Neil V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-a386d3e4488f1fcd2a7df3d72efad760c4602ed90629aade853822b5dddfb8e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Barium - pharmacology</topic><topic>Cell Line</topic><topic>Cell Membrane Permeability - drug effects</topic><topic>Cell Membrane Permeability - physiology</topic><topic>Cellular biology</topic><topic>Cesium - pharmacology</topic><topic>Channels, Receptors, and Transporters</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Conductivity</topic><topic>Humans</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Ions</topic><topic>KCNQ2 Potassium Channel</topic><topic>KCNQ3 Potassium Channel</topic><topic>Kidney - drug effects</topic><topic>Kidney - embryology</topic><topic>Kidney - physiology</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Molecular biology</topic><topic>Neurological disorders</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Potassium</topic><topic>Potassium - pharmacology</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - physiology</topic><topic>Potassium Channels, Voltage-Gated</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prole, David L.</creatorcontrib><creatorcontrib>Marrion, Neil V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prole, David L.</au><au>Marrion, Neil V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ionic Permeation and Conduction Properties of Neuronal KCNQ2/KCNQ3 Potassium Channels</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2004-03-01</date><risdate>2004</risdate><volume>86</volume><issue>3</issue><spage>1454</spage><epage>1469</epage><pages>1454-1469</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Heteromeric KCNQ2/3 potassium channels are thought to underlie the M-current, a subthreshold potassium current involved in the regulation of neuronal excitability. KCNQ channel subunits are structurally unique, but it is unknown whether these structural differences result in unique conduction properties. Heterologously expressed KCNQ2/3 channels showed a permeation sequence of T l + &gt; K + &gt; R b + &gt; N H 4 + ≥ C s + &gt; N a + , while showing a conduction sequence of K + &gt; Tl &gt; N H 4 + ∼ R b + &gt; C s + . A differential contribution of component subunits to the properties of heteromeric KCNQ2/3 channels was demonstrated by studying homomeric KCNQ2 and KCNQ3 channels, which displayed contrasting ionic selectivities. KCNQ2/3 channels did not exhibit an anomalous mole-fraction effect in mixtures of K + and Rb +. However, extreme voltage-dependence of block by external Cs + was indicative of multi-ion pore behavior. Block of KCNQ2/3 channels by external Ba 2+ ions was voltage-independent, demonstrating unusual ionic occupation of the outer pore. Selectivity properties and block of KCNQ2 were altered by mutation of outer pore residues in a manner consistent with the presence of multiple ion-binding sites. KCNQ2/3 channel deactivation kinetics were slowed exclusively by Rb +, whereas activation of KCNQ2/3 channels was altered by a variety of external permeant ions. These data indicate that KCNQ2/3 channels are multi-ion pores which exhibit distinctive mechanisms of ion conduction and gating.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>14990473</pmid><doi>10.1016/S0006-3495(04)74214-9</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2004-03, Vol.86 (3), p.1454-1469
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1303981
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Barium - pharmacology
Cell Line
Cell Membrane Permeability - drug effects
Cell Membrane Permeability - physiology
Cellular biology
Cesium - pharmacology
Channels, Receptors, and Transporters
Dose-Response Relationship, Drug
Electric Conductivity
Humans
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Ions
KCNQ2 Potassium Channel
KCNQ3 Potassium Channel
Kidney - drug effects
Kidney - embryology
Kidney - physiology
Membrane Potentials - drug effects
Membrane Potentials - physiology
Molecular biology
Neurological disorders
Neurons - drug effects
Neurons - physiology
Potassium
Potassium - pharmacology
Potassium Channels - chemistry
Potassium Channels - physiology
Potassium Channels, Voltage-Gated
Structure-Activity Relationship
title Ionic Permeation and Conduction Properties of Neuronal KCNQ2/KCNQ3 Potassium Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T08%3A27%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ionic%20Permeation%20and%20Conduction%20Properties%20of%20Neuronal%20KCNQ2/KCNQ3%20Potassium%20Channels&rft.jtitle=Biophysical%20journal&rft.au=Prole,%20David%20L.&rft.date=2004-03-01&rft.volume=86&rft.issue=3&rft.spage=1454&rft.epage=1469&rft.pages=1454-1469&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(04)74214-9&rft_dat=%3Cproquest_pubme%3E665099181%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215714537&rft_id=info:pmid/14990473&rft_els_id=S0006349504742149&rfr_iscdi=true