Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers
The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2003-02, Vol.84 (2), p.1344-1351 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1351 |
---|---|
container_issue | 2 |
container_start_page | 1344 |
container_title | Biophysical journal |
container_volume | 84 |
creator | Singer, Wolfgang Frick, Manfred Haller, Thomas Bernet, Stefan Ritsch-Marte, Monika Dietl, Paul |
description | The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca
2+ concentration ([Ca
2+]
c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/
μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain. |
doi_str_mv | 10.1016/S0006-3495(03)74950-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349503749509</els_id><sourcerecordid>287831201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxS1EVba0HwEUcajoIa3HjmPn0qpC0CJRIRU4W15nAkbZeGs7W7afvt4_opQLp3fwb57nzSPkAOhHoFB_uqKU1iWvGnFM-QeZlZbNDpmAqFhJqap3yeQR2SNvYrynFJig8JrsZa2kAjEhNz_Q3pnBWdMXZz5YjMX5bI6tG26L0wdvl8knZ4urMXTGJjOk4if2aCJmXaDpsS2my-JyntYO178R_2CIb8mrzvQR3211n9ycnV6ffC8vLr-dn3y9KG3eMpVcKluhlUII7GSnKIBoTMc7gZxBY1tglVBgW8lbyaDCulU8h2jYtOmAIt8nnze-83E6w9bikILp9Ty4mQlL7Y3T_78M7k7f-oUGTpkEyAbvtwbB_xoxJj1z0WLfmwH9GLVkTa2UqjN49Ay892MYcjjNQEiQjDcZEhvIBh9jwO5xE6B61Zpet6ZXlWjK9bo1vZo7fBrj39S2pgx82QCYj7lwGHS0Dgebewpok269e-GLv-bkp0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215717239</pqid></control><display><type>article</type><title>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Singer, Wolfgang ; Frick, Manfred ; Haller, Thomas ; Bernet, Stefan ; Ritsch-Marte, Monika ; Dietl, Paul</creator><creatorcontrib>Singer, Wolfgang ; Frick, Manfred ; Haller, Thomas ; Bernet, Stefan ; Ritsch-Marte, Monika ; Dietl, Paul</creatorcontrib><description>The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca
2+ concentration ([Ca
2+]
c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/
μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(03)74950-9</identifier><identifier>PMID: 12547815</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium - metabolism ; Cell Adhesion - physiology ; Cell Biophysics ; Cell Membrane - physiology ; Cells, Cultured ; Cellular biology ; Elasticity ; Exocytosis - physiology ; Experiments ; Lasers ; Macromolecular Substances ; Male ; Mechanotransduction, Cellular - physiology ; Membrane Fusion - physiology ; Membranes ; Micromanipulation - instrumentation ; Micromanipulation - methods ; Microscopy, Fluorescence - methods ; Physical Stimulation - methods ; Physics ; Pulmonary Alveoli - cytology ; Pulmonary Alveoli - physiology ; Pulmonary Surfactants - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Stress, Mechanical ; Surface Properties ; Transport Vesicles - physiology ; Weight-Bearing - physiology</subject><ispartof>Biophysical journal, 2003-02, Vol.84 (2), p.1344-1351</ispartof><rights>2003 The Biophysical Society</rights><rights>Copyright Biophysical Society Feb 2003</rights><rights>Copyright © 2003, Biophysical Society 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</citedby><cites>FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302711/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(03)74950-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12547815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singer, Wolfgang</creatorcontrib><creatorcontrib>Frick, Manfred</creatorcontrib><creatorcontrib>Haller, Thomas</creatorcontrib><creatorcontrib>Bernet, Stefan</creatorcontrib><creatorcontrib>Ritsch-Marte, Monika</creatorcontrib><creatorcontrib>Dietl, Paul</creatorcontrib><title>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca
2+ concentration ([Ca
2+]
c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/
μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Biophysics</subject><subject>Cell Membrane - physiology</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Elasticity</subject><subject>Exocytosis - physiology</subject><subject>Experiments</subject><subject>Lasers</subject><subject>Macromolecular Substances</subject><subject>Male</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Membrane Fusion - physiology</subject><subject>Membranes</subject><subject>Micromanipulation - instrumentation</subject><subject>Micromanipulation - methods</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Physical Stimulation - methods</subject><subject>Physics</subject><subject>Pulmonary Alveoli - cytology</subject><subject>Pulmonary Alveoli - physiology</subject><subject>Pulmonary Surfactants - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><subject>Transport Vesicles - physiology</subject><subject>Weight-Bearing - physiology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9P3DAQxS1EVba0HwEUcajoIa3HjmPn0qpC0CJRIRU4W15nAkbZeGs7W7afvt4_opQLp3fwb57nzSPkAOhHoFB_uqKU1iWvGnFM-QeZlZbNDpmAqFhJqap3yeQR2SNvYrynFJig8JrsZa2kAjEhNz_Q3pnBWdMXZz5YjMX5bI6tG26L0wdvl8knZ4urMXTGJjOk4if2aCJmXaDpsS2my-JyntYO178R_2CIb8mrzvQR3211n9ycnV6ffC8vLr-dn3y9KG3eMpVcKluhlUII7GSnKIBoTMc7gZxBY1tglVBgW8lbyaDCulU8h2jYtOmAIt8nnze-83E6w9bikILp9Ty4mQlL7Y3T_78M7k7f-oUGTpkEyAbvtwbB_xoxJj1z0WLfmwH9GLVkTa2UqjN49Ay892MYcjjNQEiQjDcZEhvIBh9jwO5xE6B61Zpet6ZXlWjK9bo1vZo7fBrj39S2pgx82QCYj7lwGHS0Dgebewpok269e-GLv-bkp0E</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Singer, Wolfgang</creator><creator>Frick, Manfred</creator><creator>Haller, Thomas</creator><creator>Bernet, Stefan</creator><creator>Ritsch-Marte, Monika</creator><creator>Dietl, Paul</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030201</creationdate><title>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</title><author>Singer, Wolfgang ; Frick, Manfred ; Haller, Thomas ; Bernet, Stefan ; Ritsch-Marte, Monika ; Dietl, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Biophysics</topic><topic>Cell Membrane - physiology</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Elasticity</topic><topic>Exocytosis - physiology</topic><topic>Experiments</topic><topic>Lasers</topic><topic>Macromolecular Substances</topic><topic>Male</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Membrane Fusion - physiology</topic><topic>Membranes</topic><topic>Micromanipulation - instrumentation</topic><topic>Micromanipulation - methods</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Physical Stimulation - methods</topic><topic>Physics</topic><topic>Pulmonary Alveoli - cytology</topic><topic>Pulmonary Alveoli - physiology</topic><topic>Pulmonary Surfactants - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><topic>Transport Vesicles - physiology</topic><topic>Weight-Bearing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singer, Wolfgang</creatorcontrib><creatorcontrib>Frick, Manfred</creatorcontrib><creatorcontrib>Haller, Thomas</creatorcontrib><creatorcontrib>Bernet, Stefan</creatorcontrib><creatorcontrib>Ritsch-Marte, Monika</creatorcontrib><creatorcontrib>Dietl, Paul</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singer, Wolfgang</au><au>Frick, Manfred</au><au>Haller, Thomas</au><au>Bernet, Stefan</au><au>Ritsch-Marte, Monika</au><au>Dietl, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>84</volume><issue>2</issue><spage>1344</spage><epage>1351</epage><pages>1344-1351</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca
2+ concentration ([Ca
2+]
c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/
μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12547815</pmid><doi>10.1016/S0006-3495(03)74950-9</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2003-02, Vol.84 (2), p.1344-1351 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302711 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Calcium - metabolism Cell Adhesion - physiology Cell Biophysics Cell Membrane - physiology Cells, Cultured Cellular biology Elasticity Exocytosis - physiology Experiments Lasers Macromolecular Substances Male Mechanotransduction, Cellular - physiology Membrane Fusion - physiology Membranes Micromanipulation - instrumentation Micromanipulation - methods Microscopy, Fluorescence - methods Physical Stimulation - methods Physics Pulmonary Alveoli - cytology Pulmonary Alveoli - physiology Pulmonary Surfactants - pharmacokinetics Rats Rats, Sprague-Dawley Stress, Mechanical Surface Properties Transport Vesicles - physiology Weight-Bearing - physiology |
title | Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Forces%20Impeding%20Exocytotic%20Surfactant%20Release%20Revealed%20by%20Optical%20Tweezers&rft.jtitle=Biophysical%20journal&rft.au=Singer,%20Wolfgang&rft.date=2003-02-01&rft.volume=84&rft.issue=2&rft.spage=1344&rft.epage=1351&rft.pages=1344-1351&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(03)74950-9&rft_dat=%3Cproquest_pubme%3E287831201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215717239&rft_id=info:pmid/12547815&rft_els_id=S0006349503749509&rfr_iscdi=true |