Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers

The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2003-02, Vol.84 (2), p.1344-1351
Hauptverfasser: Singer, Wolfgang, Frick, Manfred, Haller, Thomas, Bernet, Stefan, Ritsch-Marte, Monika, Dietl, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1351
container_issue 2
container_start_page 1344
container_title Biophysical journal
container_volume 84
creator Singer, Wolfgang
Frick, Manfred
Haller, Thomas
Bernet, Stefan
Ritsch-Marte, Monika
Dietl, Paul
description The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca 2+ concentration ([Ca 2+] c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/ μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.
doi_str_mv 10.1016/S0006-3495(03)74950-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349503749509</els_id><sourcerecordid>287831201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</originalsourceid><addsrcrecordid>eNqFkU9P3DAQxS1EVba0HwEUcajoIa3HjmPn0qpC0CJRIRU4W15nAkbZeGs7W7afvt4_opQLp3fwb57nzSPkAOhHoFB_uqKU1iWvGnFM-QeZlZbNDpmAqFhJqap3yeQR2SNvYrynFJig8JrsZa2kAjEhNz_Q3pnBWdMXZz5YjMX5bI6tG26L0wdvl8knZ4urMXTGJjOk4if2aCJmXaDpsS2my-JyntYO178R_2CIb8mrzvQR3211n9ycnV6ffC8vLr-dn3y9KG3eMpVcKluhlUII7GSnKIBoTMc7gZxBY1tglVBgW8lbyaDCulU8h2jYtOmAIt8nnze-83E6w9bikILp9Ty4mQlL7Y3T_78M7k7f-oUGTpkEyAbvtwbB_xoxJj1z0WLfmwH9GLVkTa2UqjN49Ay892MYcjjNQEiQjDcZEhvIBh9jwO5xE6B61Zpet6ZXlWjK9bo1vZo7fBrj39S2pgx82QCYj7lwGHS0Dgebewpok269e-GLv-bkp0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215717239</pqid></control><display><type>article</type><title>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Singer, Wolfgang ; Frick, Manfred ; Haller, Thomas ; Bernet, Stefan ; Ritsch-Marte, Monika ; Dietl, Paul</creator><creatorcontrib>Singer, Wolfgang ; Frick, Manfred ; Haller, Thomas ; Bernet, Stefan ; Ritsch-Marte, Monika ; Dietl, Paul</creatorcontrib><description>The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca 2+ concentration ([Ca 2+] c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/ μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(03)74950-9</identifier><identifier>PMID: 12547815</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium - metabolism ; Cell Adhesion - physiology ; Cell Biophysics ; Cell Membrane - physiology ; Cells, Cultured ; Cellular biology ; Elasticity ; Exocytosis - physiology ; Experiments ; Lasers ; Macromolecular Substances ; Male ; Mechanotransduction, Cellular - physiology ; Membrane Fusion - physiology ; Membranes ; Micromanipulation - instrumentation ; Micromanipulation - methods ; Microscopy, Fluorescence - methods ; Physical Stimulation - methods ; Physics ; Pulmonary Alveoli - cytology ; Pulmonary Alveoli - physiology ; Pulmonary Surfactants - pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Stress, Mechanical ; Surface Properties ; Transport Vesicles - physiology ; Weight-Bearing - physiology</subject><ispartof>Biophysical journal, 2003-02, Vol.84 (2), p.1344-1351</ispartof><rights>2003 The Biophysical Society</rights><rights>Copyright Biophysical Society Feb 2003</rights><rights>Copyright © 2003, Biophysical Society 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</citedby><cites>FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302711/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(03)74950-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12547815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singer, Wolfgang</creatorcontrib><creatorcontrib>Frick, Manfred</creatorcontrib><creatorcontrib>Haller, Thomas</creatorcontrib><creatorcontrib>Bernet, Stefan</creatorcontrib><creatorcontrib>Ritsch-Marte, Monika</creatorcontrib><creatorcontrib>Dietl, Paul</creatorcontrib><title>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca 2+ concentration ([Ca 2+] c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/ μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Biophysics</subject><subject>Cell Membrane - physiology</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Elasticity</subject><subject>Exocytosis - physiology</subject><subject>Experiments</subject><subject>Lasers</subject><subject>Macromolecular Substances</subject><subject>Male</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Membrane Fusion - physiology</subject><subject>Membranes</subject><subject>Micromanipulation - instrumentation</subject><subject>Micromanipulation - methods</subject><subject>Microscopy, Fluorescence - methods</subject><subject>Physical Stimulation - methods</subject><subject>Physics</subject><subject>Pulmonary Alveoli - cytology</subject><subject>Pulmonary Alveoli - physiology</subject><subject>Pulmonary Surfactants - pharmacokinetics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><subject>Transport Vesicles - physiology</subject><subject>Weight-Bearing - physiology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9P3DAQxS1EVba0HwEUcajoIa3HjmPn0qpC0CJRIRU4W15nAkbZeGs7W7afvt4_opQLp3fwb57nzSPkAOhHoFB_uqKU1iWvGnFM-QeZlZbNDpmAqFhJqap3yeQR2SNvYrynFJig8JrsZa2kAjEhNz_Q3pnBWdMXZz5YjMX5bI6tG26L0wdvl8knZ4urMXTGJjOk4if2aCJmXaDpsS2my-JyntYO178R_2CIb8mrzvQR3211n9ycnV6ffC8vLr-dn3y9KG3eMpVcKluhlUII7GSnKIBoTMc7gZxBY1tglVBgW8lbyaDCulU8h2jYtOmAIt8nnze-83E6w9bikILp9Ty4mQlL7Y3T_78M7k7f-oUGTpkEyAbvtwbB_xoxJj1z0WLfmwH9GLVkTa2UqjN49Ay892MYcjjNQEiQjDcZEhvIBh9jwO5xE6B61Zpet6ZXlWjK9bo1vZo7fBrj39S2pgx82QCYj7lwGHS0Dgebewpok269e-GLv-bkp0E</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Singer, Wolfgang</creator><creator>Frick, Manfred</creator><creator>Haller, Thomas</creator><creator>Bernet, Stefan</creator><creator>Ritsch-Marte, Monika</creator><creator>Dietl, Paul</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030201</creationdate><title>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</title><author>Singer, Wolfgang ; Frick, Manfred ; Haller, Thomas ; Bernet, Stefan ; Ritsch-Marte, Monika ; Dietl, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-378c4ec7555ef7f801159af3f5e3219cd124581cd73d7214e6d8301292b9f10e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Biophysics</topic><topic>Cell Membrane - physiology</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Elasticity</topic><topic>Exocytosis - physiology</topic><topic>Experiments</topic><topic>Lasers</topic><topic>Macromolecular Substances</topic><topic>Male</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Membrane Fusion - physiology</topic><topic>Membranes</topic><topic>Micromanipulation - instrumentation</topic><topic>Micromanipulation - methods</topic><topic>Microscopy, Fluorescence - methods</topic><topic>Physical Stimulation - methods</topic><topic>Physics</topic><topic>Pulmonary Alveoli - cytology</topic><topic>Pulmonary Alveoli - physiology</topic><topic>Pulmonary Surfactants - pharmacokinetics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><topic>Transport Vesicles - physiology</topic><topic>Weight-Bearing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singer, Wolfgang</creatorcontrib><creatorcontrib>Frick, Manfred</creatorcontrib><creatorcontrib>Haller, Thomas</creatorcontrib><creatorcontrib>Bernet, Stefan</creatorcontrib><creatorcontrib>Ritsch-Marte, Monika</creatorcontrib><creatorcontrib>Dietl, Paul</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singer, Wolfgang</au><au>Frick, Manfred</au><au>Haller, Thomas</au><au>Bernet, Stefan</au><au>Ritsch-Marte, Monika</au><au>Dietl, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>84</volume><issue>2</issue><spage>1344</spage><epage>1351</epage><pages>1344-1351</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The release of surfactant from alveolar type II cells is essential to lower the surface tension in the lung and to facilitate inspiration. However, the factors controlling dispersal and diffusion of this hydrophobic material are still poorly understood. Here we report that release of surfactant from the fused vesicle, termed lamellar body (LB), resisted mechanical forces applied by optical tweezers: At constant trapping force, the probability to expand LB contents, i.e., to “pull” surfactant into the extracellular fluid, increased with time after LB fusion with the plasma membrane, consistent with slow fusion pore expansion in these cells. Elevations of the cytoplasmic Ca 2+ concentration ([Ca 2+] c) had a similar effect. Inasmuch as surfactant did not disintegrate in the extracellular space, this method permitted for the first time the determination of elastic and recoil properties of the macromolecular complex, yielding a spring constant of ∼12.5 pN/ μm. This is the first functional evidence that release of hydrophobic material is mechanically impeded and occurs in an “all-or-none” fashion. This mode of release is most probably the result of cohesive forces of surfactant, combined with adhesive forces and/or retaining forces exerted by a constrictive fusion pore acting as a regulated mechanical barrier, withstanding forces up to 160 pN. In independent experiments equiaxial strain was exerted on cells without optical tweezers. Strain facilitated surfactant release from preexisting fused vesicles, consistent with the view of mechanical impediments during the release process, which can be overcome by cell strain.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12547815</pmid><doi>10.1016/S0006-3495(03)74950-9</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2003-02, Vol.84 (2), p.1344-1351
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302711
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Calcium - metabolism
Cell Adhesion - physiology
Cell Biophysics
Cell Membrane - physiology
Cells, Cultured
Cellular biology
Elasticity
Exocytosis - physiology
Experiments
Lasers
Macromolecular Substances
Male
Mechanotransduction, Cellular - physiology
Membrane Fusion - physiology
Membranes
Micromanipulation - instrumentation
Micromanipulation - methods
Microscopy, Fluorescence - methods
Physical Stimulation - methods
Physics
Pulmonary Alveoli - cytology
Pulmonary Alveoli - physiology
Pulmonary Surfactants - pharmacokinetics
Rats
Rats, Sprague-Dawley
Stress, Mechanical
Surface Properties
Transport Vesicles - physiology
Weight-Bearing - physiology
title Mechanical Forces Impeding Exocytotic Surfactant Release Revealed by Optical Tweezers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Forces%20Impeding%20Exocytotic%20Surfactant%20Release%20Revealed%20by%20Optical%20Tweezers&rft.jtitle=Biophysical%20journal&rft.au=Singer,%20Wolfgang&rft.date=2003-02-01&rft.volume=84&rft.issue=2&rft.spage=1344&rft.epage=1351&rft.pages=1344-1351&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(03)74950-9&rft_dat=%3Cproquest_pubme%3E287831201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215717239&rft_id=info:pmid/12547815&rft_els_id=S0006349503749509&rfr_iscdi=true