Permeant Cations and Blockers Modulate pH Gating of ROMK Channels
External potassium (K) activates the inward rectifier ROMK (K ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevati...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2003-02, Vol.84 (2), p.910-921 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 921 |
---|---|
container_issue | 2 |
container_start_page | 910 |
container_title | Biophysical journal |
container_volume | 84 |
creator | Sackin, H. Vasilyev, A. Palmer, L.G. Krambis, M. |
description | External potassium (K) activates the inward rectifier ROMK (K
ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open
Xenopus oocyte preparation. Elevating extracellular K from 1
mM to 10
mM to 100
mM activated ROMK channels by shifting their apparent
pK
a from 7.2
±
0.1 (
n
=
6) in 1
mM K, to 6.9
±
0.02 (
n
=
5) in 10
mM K, and to 6.6
±
0.03 (
n
=
5) in 100
mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [
K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1
mM external K) by shifting the apparent
pK
a of ROMK from 7.2
±
0.1 (
n
=
6) in 1
mM K to 6.8
±
0.01 (
n
=
4) in 1
mM K
+
104
mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1
mM K and caused a comparable shift in apparent
pK
a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter. |
doi_str_mv | 10.1016/S0006-3495(03)74908-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950374908X</els_id><sourcerecordid>287824591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq0KVBboT6CyOJVD6NiOY-fSClZ8CRCIthI3y-tMIDRrL3YWiX-Pl11Be-I0h3nmnVcPITsM9hmw6vsvAKgKUdbyG4g9Vdagi9tPZMRkyQsAXa2R0RuyQTZTegBgXAL7TDbyLJVSYkQOrjFO0fqBju3QBZ-o9Q097IP7izHRy9DMezsgnZ3Skwz4OxpaenN1eU7H99Z77NM2WW9tn_DLam6RP8dHv8enxcXVydn44KJwudtQTLjGukZVK1kLwVsntBMIutbQtKhQu4ngSgDnVWknEjjTlWzaxgkrdcVrsUV-LHNn88kUG4d-iLY3s9hNbXw2wXbm_43v7s1deDIsh1bVImB3FRDD4xzTYB7CPPrc2XAmFVOKlxmSS8jFkFLE9u0BA7MQb17Fm4VVA8K8ije3-e7rv-3er1amM_BzCWRl-NRhNMl16B02XUQ3mCZ0H7x4AQt4ka4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215717724</pqid></control><display><type>article</type><title>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><creator>Sackin, H. ; Vasilyev, A. ; Palmer, L.G. ; Krambis, M.</creator><creatorcontrib>Sackin, H. ; Vasilyev, A. ; Palmer, L.G. ; Krambis, M.</creatorcontrib><description>External potassium (K) activates the inward rectifier ROMK (K
ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open
Xenopus oocyte preparation. Elevating extracellular K from 1
mM to 10
mM to 100
mM activated ROMK channels by shifting their apparent
pK
a from 7.2
±
0.1 (
n
=
6) in 1
mM K, to 6.9
±
0.02 (
n
=
5) in 10
mM K, and to 6.6
±
0.03 (
n
=
5) in 100
mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [
K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1
mM external K) by shifting the apparent
pK
a of ROMK from 7.2
±
0.1 (
n
=
6) in 1
mM K to 6.8
±
0.01 (
n
=
4) in 1
mM K
+
104
mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1
mM K and caused a comparable shift in apparent
pK
a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(03)74908-X</identifier><identifier>PMID: 12547773</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bee Venoms - pharmacology ; Cells, Cultured ; Cellular biology ; Channels, Receptors, and Transporters ; Dose-Response Relationship, Drug ; Electric Conductivity ; Experiments ; Female ; Hydrogen-Ion Concentration ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Mathematical models ; Models, Biological ; Mutagenesis, Site-Directed ; Oocytes - chemistry ; Oocytes - physiology ; Potassium ; Potassium - pharmacology ; Potassium Channels - drug effects ; Potassium Channels - physiology ; Potassium Channels, Inwardly Rectifying ; Recombinant Proteins - drug effects ; Recombinant Proteins - metabolism ; Sensitivity and Specificity ; Xenopus laevis - physiology</subject><ispartof>Biophysical journal, 2003-02, Vol.84 (2), p.910-921</ispartof><rights>2003 The Biophysical Society</rights><rights>Copyright Biophysical Society Feb 2003</rights><rights>Copyright © 2003, Biophysical Society 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</citedby><cites>FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302669/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(03)74908-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27929,27930,46000,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12547773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sackin, H.</creatorcontrib><creatorcontrib>Vasilyev, A.</creatorcontrib><creatorcontrib>Palmer, L.G.</creatorcontrib><creatorcontrib>Krambis, M.</creatorcontrib><title>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>External potassium (K) activates the inward rectifier ROMK (K
ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open
Xenopus oocyte preparation. Elevating extracellular K from 1
mM to 10
mM to 100
mM activated ROMK channels by shifting their apparent
pK
a from 7.2
±
0.1 (
n
=
6) in 1
mM K, to 6.9
±
0.02 (
n
=
5) in 10
mM K, and to 6.6
±
0.03 (
n
=
5) in 100
mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [
K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1
mM external K) by shifting the apparent
pK
a of ROMK from 7.2
±
0.1 (
n
=
6) in 1
mM K to 6.8
±
0.01 (
n
=
4) in 1
mM K
+
104
mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1
mM K and caused a comparable shift in apparent
pK
a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.</description><subject>Animals</subject><subject>Bee Venoms - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Channels, Receptors, and Transporters</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Conductivity</subject><subject>Experiments</subject><subject>Female</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oocytes - chemistry</subject><subject>Oocytes - physiology</subject><subject>Potassium</subject><subject>Potassium - pharmacology</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - physiology</subject><subject>Potassium Channels, Inwardly Rectifying</subject><subject>Recombinant Proteins - drug effects</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sensitivity and Specificity</subject><subject>Xenopus laevis - physiology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1P3DAQhq0KVBboT6CyOJVD6NiOY-fSClZ8CRCIthI3y-tMIDRrL3YWiX-Pl11Be-I0h3nmnVcPITsM9hmw6vsvAKgKUdbyG4g9Vdagi9tPZMRkyQsAXa2R0RuyQTZTegBgXAL7TDbyLJVSYkQOrjFO0fqBju3QBZ-o9Q097IP7izHRy9DMezsgnZ3Skwz4OxpaenN1eU7H99Z77NM2WW9tn_DLam6RP8dHv8enxcXVydn44KJwudtQTLjGukZVK1kLwVsntBMIutbQtKhQu4ngSgDnVWknEjjTlWzaxgkrdcVrsUV-LHNn88kUG4d-iLY3s9hNbXw2wXbm_43v7s1deDIsh1bVImB3FRDD4xzTYB7CPPrc2XAmFVOKlxmSS8jFkFLE9u0BA7MQb17Fm4VVA8K8ije3-e7rv-3er1amM_BzCWRl-NRhNMl16B02XUQ3mCZ0H7x4AQt4ka4</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Sackin, H.</creator><creator>Vasilyev, A.</creator><creator>Palmer, L.G.</creator><creator>Krambis, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20030201</creationdate><title>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</title><author>Sackin, H. ; Vasilyev, A. ; Palmer, L.G. ; Krambis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Bee Venoms - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Channels, Receptors, and Transporters</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Conductivity</topic><topic>Experiments</topic><topic>Female</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oocytes - chemistry</topic><topic>Oocytes - physiology</topic><topic>Potassium</topic><topic>Potassium - pharmacology</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - physiology</topic><topic>Potassium Channels, Inwardly Rectifying</topic><topic>Recombinant Proteins - drug effects</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sensitivity and Specificity</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sackin, H.</creatorcontrib><creatorcontrib>Vasilyev, A.</creatorcontrib><creatorcontrib>Palmer, L.G.</creatorcontrib><creatorcontrib>Krambis, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sackin, H.</au><au>Vasilyev, A.</au><au>Palmer, L.G.</au><au>Krambis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>84</volume><issue>2</issue><spage>910</spage><epage>921</epage><pages>910-921</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>External potassium (K) activates the inward rectifier ROMK (K
ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open
Xenopus oocyte preparation. Elevating extracellular K from 1
mM to 10
mM to 100
mM activated ROMK channels by shifting their apparent
pK
a from 7.2
±
0.1 (
n
=
6) in 1
mM K, to 6.9
±
0.02 (
n
=
5) in 10
mM K, and to 6.6
±
0.03 (
n
=
5) in 100
mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [
K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1
mM external K) by shifting the apparent
pK
a of ROMK from 7.2
±
0.1 (
n
=
6) in 1
mM K to 6.8
±
0.01 (
n
=
4) in 1
mM K
+
104
mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1
mM K and caused a comparable shift in apparent
pK
a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12547773</pmid><doi>10.1016/S0006-3495(03)74908-X</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2003-02, Vol.84 (2), p.910-921 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302669 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); PubMed Central |
subjects | Animals Bee Venoms - pharmacology Cells, Cultured Cellular biology Channels, Receptors, and Transporters Dose-Response Relationship, Drug Electric Conductivity Experiments Female Hydrogen-Ion Concentration Ion Channel Gating - drug effects Ion Channel Gating - physiology Mathematical models Models, Biological Mutagenesis, Site-Directed Oocytes - chemistry Oocytes - physiology Potassium Potassium - pharmacology Potassium Channels - drug effects Potassium Channels - physiology Potassium Channels, Inwardly Rectifying Recombinant Proteins - drug effects Recombinant Proteins - metabolism Sensitivity and Specificity Xenopus laevis - physiology |
title | Permeant Cations and Blockers Modulate pH Gating of ROMK Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeant%20Cations%20and%20Blockers%20Modulate%20pH%20Gating%20of%20ROMK%20Channels&rft.jtitle=Biophysical%20journal&rft.au=Sackin,%20H.&rft.date=2003-02-01&rft.volume=84&rft.issue=2&rft.spage=910&rft.epage=921&rft.pages=910-921&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(03)74908-X&rft_dat=%3Cproquest_pubme%3E287824591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215717724&rft_id=info:pmid/12547773&rft_els_id=S000634950374908X&rfr_iscdi=true |