Permeant Cations and Blockers Modulate pH Gating of ROMK Channels

External potassium (K) activates the inward rectifier ROMK (K ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2003-02, Vol.84 (2), p.910-921
Hauptverfasser: Sackin, H., Vasilyev, A., Palmer, L.G., Krambis, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue 2
container_start_page 910
container_title Biophysical journal
container_volume 84
creator Sackin, H.
Vasilyev, A.
Palmer, L.G.
Krambis, M.
description External potassium (K) activates the inward rectifier ROMK (K ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevating extracellular K from 1 mM to 10 mM to 100 mM activated ROMK channels by shifting their apparent pK a from 7.2 ± 0.1 ( n = 6) in 1 mM K, to 6.9 ± 0.02 ( n = 5) in 10 mM K, and to 6.6 ± 0.03 ( n = 5) in 100 mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [ K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1 mM external K) by shifting the apparent pK a of ROMK from 7.2 ± 0.1 ( n = 6) in 1 mM K to 6.8 ± 0.01 ( n = 4) in 1 mM K + 104 mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1 mM K and caused a comparable shift in apparent pK a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.
doi_str_mv 10.1016/S0006-3495(03)74908-X
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302669</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950374908X</els_id><sourcerecordid>287824591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhq0KVBboT6CyOJVD6NiOY-fSClZ8CRCIthI3y-tMIDRrL3YWiX-Pl11Be-I0h3nmnVcPITsM9hmw6vsvAKgKUdbyG4g9Vdagi9tPZMRkyQsAXa2R0RuyQTZTegBgXAL7TDbyLJVSYkQOrjFO0fqBju3QBZ-o9Q097IP7izHRy9DMezsgnZ3Skwz4OxpaenN1eU7H99Z77NM2WW9tn_DLam6RP8dHv8enxcXVydn44KJwudtQTLjGukZVK1kLwVsntBMIutbQtKhQu4ngSgDnVWknEjjTlWzaxgkrdcVrsUV-LHNn88kUG4d-iLY3s9hNbXw2wXbm_43v7s1deDIsh1bVImB3FRDD4xzTYB7CPPrc2XAmFVOKlxmSS8jFkFLE9u0BA7MQb17Fm4VVA8K8ije3-e7rv-3er1amM_BzCWRl-NRhNMl16B02XUQ3mCZ0H7x4AQt4ka4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215717724</pqid></control><display><type>article</type><title>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><creator>Sackin, H. ; Vasilyev, A. ; Palmer, L.G. ; Krambis, M.</creator><creatorcontrib>Sackin, H. ; Vasilyev, A. ; Palmer, L.G. ; Krambis, M.</creatorcontrib><description>External potassium (K) activates the inward rectifier ROMK (K ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevating extracellular K from 1 mM to 10 mM to 100 mM activated ROMK channels by shifting their apparent pK a from 7.2 ± 0.1 ( n = 6) in 1 mM K, to 6.9 ± 0.02 ( n = 5) in 10 mM K, and to 6.6 ± 0.03 ( n = 5) in 100 mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [ K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1 mM external K) by shifting the apparent pK a of ROMK from 7.2 ± 0.1 ( n = 6) in 1 mM K to 6.8 ± 0.01 ( n = 4) in 1 mM K + 104 mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1 mM K and caused a comparable shift in apparent pK a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(03)74908-X</identifier><identifier>PMID: 12547773</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bee Venoms - pharmacology ; Cells, Cultured ; Cellular biology ; Channels, Receptors, and Transporters ; Dose-Response Relationship, Drug ; Electric Conductivity ; Experiments ; Female ; Hydrogen-Ion Concentration ; Ion Channel Gating - drug effects ; Ion Channel Gating - physiology ; Mathematical models ; Models, Biological ; Mutagenesis, Site-Directed ; Oocytes - chemistry ; Oocytes - physiology ; Potassium ; Potassium - pharmacology ; Potassium Channels - drug effects ; Potassium Channels - physiology ; Potassium Channels, Inwardly Rectifying ; Recombinant Proteins - drug effects ; Recombinant Proteins - metabolism ; Sensitivity and Specificity ; Xenopus laevis - physiology</subject><ispartof>Biophysical journal, 2003-02, Vol.84 (2), p.910-921</ispartof><rights>2003 The Biophysical Society</rights><rights>Copyright Biophysical Society Feb 2003</rights><rights>Copyright © 2003, Biophysical Society 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</citedby><cites>FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302669/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(03)74908-X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,886,3551,27929,27930,46000,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12547773$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sackin, H.</creatorcontrib><creatorcontrib>Vasilyev, A.</creatorcontrib><creatorcontrib>Palmer, L.G.</creatorcontrib><creatorcontrib>Krambis, M.</creatorcontrib><title>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>External potassium (K) activates the inward rectifier ROMK (K ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevating extracellular K from 1 mM to 10 mM to 100 mM activated ROMK channels by shifting their apparent pK a from 7.2 ± 0.1 ( n = 6) in 1 mM K, to 6.9 ± 0.02 ( n = 5) in 10 mM K, and to 6.6 ± 0.03 ( n = 5) in 100 mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [ K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1 mM external K) by shifting the apparent pK a of ROMK from 7.2 ± 0.1 ( n = 6) in 1 mM K to 6.8 ± 0.01 ( n = 4) in 1 mM K + 104 mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1 mM K and caused a comparable shift in apparent pK a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.</description><subject>Animals</subject><subject>Bee Venoms - pharmacology</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Channels, Receptors, and Transporters</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Conductivity</subject><subject>Experiments</subject><subject>Female</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ion Channel Gating - drug effects</subject><subject>Ion Channel Gating - physiology</subject><subject>Mathematical models</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oocytes - chemistry</subject><subject>Oocytes - physiology</subject><subject>Potassium</subject><subject>Potassium - pharmacology</subject><subject>Potassium Channels - drug effects</subject><subject>Potassium Channels - physiology</subject><subject>Potassium Channels, Inwardly Rectifying</subject><subject>Recombinant Proteins - drug effects</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sensitivity and Specificity</subject><subject>Xenopus laevis - physiology</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE1P3DAQhq0KVBboT6CyOJVD6NiOY-fSClZ8CRCIthI3y-tMIDRrL3YWiX-Pl11Be-I0h3nmnVcPITsM9hmw6vsvAKgKUdbyG4g9Vdagi9tPZMRkyQsAXa2R0RuyQTZTegBgXAL7TDbyLJVSYkQOrjFO0fqBju3QBZ-o9Q097IP7izHRy9DMezsgnZ3Skwz4OxpaenN1eU7H99Z77NM2WW9tn_DLam6RP8dHv8enxcXVydn44KJwudtQTLjGukZVK1kLwVsntBMIutbQtKhQu4ngSgDnVWknEjjTlWzaxgkrdcVrsUV-LHNn88kUG4d-iLY3s9hNbXw2wXbm_43v7s1deDIsh1bVImB3FRDD4xzTYB7CPPrc2XAmFVOKlxmSS8jFkFLE9u0BA7MQb17Fm4VVA8K8ije3-e7rv-3er1amM_BzCWRl-NRhNMl16B02XUQ3mCZ0H7x4AQt4ka4</recordid><startdate>20030201</startdate><enddate>20030201</enddate><creator>Sackin, H.</creator><creator>Vasilyev, A.</creator><creator>Palmer, L.G.</creator><creator>Krambis, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20030201</creationdate><title>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</title><author>Sackin, H. ; Vasilyev, A. ; Palmer, L.G. ; Krambis, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-b28e99e79759332fc38c3e08980dfe7e8cb327302264ab5021865dfdc3a586293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Bee Venoms - pharmacology</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Channels, Receptors, and Transporters</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Conductivity</topic><topic>Experiments</topic><topic>Female</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ion Channel Gating - drug effects</topic><topic>Ion Channel Gating - physiology</topic><topic>Mathematical models</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oocytes - chemistry</topic><topic>Oocytes - physiology</topic><topic>Potassium</topic><topic>Potassium - pharmacology</topic><topic>Potassium Channels - drug effects</topic><topic>Potassium Channels - physiology</topic><topic>Potassium Channels, Inwardly Rectifying</topic><topic>Recombinant Proteins - drug effects</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sensitivity and Specificity</topic><topic>Xenopus laevis - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sackin, H.</creatorcontrib><creatorcontrib>Vasilyev, A.</creatorcontrib><creatorcontrib>Palmer, L.G.</creatorcontrib><creatorcontrib>Krambis, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sackin, H.</au><au>Vasilyev, A.</au><au>Palmer, L.G.</au><au>Krambis, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Permeant Cations and Blockers Modulate pH Gating of ROMK Channels</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2003-02-01</date><risdate>2003</risdate><volume>84</volume><issue>2</issue><spage>910</spage><epage>921</epage><pages>910-921</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>External potassium (K) activates the inward rectifier ROMK (K ir1.1) by altering the pH gating of the channel. The present study examines this link between external K and internal pH sensitivity using both the two-electrode voltage clamp and the perfused, cut-open Xenopus oocyte preparation. Elevating extracellular K from 1 mM to 10 mM to 100 mM activated ROMK channels by shifting their apparent pK a from 7.2 ± 0.1 ( n = 6) in 1 mM K, to 6.9 ± 0.02 ( n = 5) in 10 mM K, and to 6.6 ± 0.03 ( n = 5) in 100 mM K. At any given internal pH, the number of active ROMK channels is a saturating function of external [ K]. Extracellular Cs (which blocks almost all inward K current) also stimulated outward ROMK conductance (at constant 1 mM external K) by shifting the apparent pK a of ROMK from 7.2 ± 0.1 ( n = 6) in 1 mM K to 6.8 ± 0.01 ( n = 4) in 1 mM K + 104 mM Cs. Surprisingly, the binding and washout of the specific blocker, Tertiapin-Q, also activated ROMK in 1 mM K and caused a comparable shift in apparent pK a. These results are interpreted in terms of both a three-state kinetic model and a two-gate structural model that is based on results with KcsA in which the selectivity filter can assume either a high or low K conformation. In this context, external K, Cs, and Tertiapin-Q activate ROMK by destabilizing the low-K (collapsed) configuration of the selectivity filter.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12547773</pmid><doi>10.1016/S0006-3495(03)74908-X</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2003-02, Vol.84 (2), p.910-921
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302669
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); PubMed Central
subjects Animals
Bee Venoms - pharmacology
Cells, Cultured
Cellular biology
Channels, Receptors, and Transporters
Dose-Response Relationship, Drug
Electric Conductivity
Experiments
Female
Hydrogen-Ion Concentration
Ion Channel Gating - drug effects
Ion Channel Gating - physiology
Mathematical models
Models, Biological
Mutagenesis, Site-Directed
Oocytes - chemistry
Oocytes - physiology
Potassium
Potassium - pharmacology
Potassium Channels - drug effects
Potassium Channels - physiology
Potassium Channels, Inwardly Rectifying
Recombinant Proteins - drug effects
Recombinant Proteins - metabolism
Sensitivity and Specificity
Xenopus laevis - physiology
title Permeant Cations and Blockers Modulate pH Gating of ROMK Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T19%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Permeant%20Cations%20and%20Blockers%20Modulate%20pH%20Gating%20of%20ROMK%20Channels&rft.jtitle=Biophysical%20journal&rft.au=Sackin,%20H.&rft.date=2003-02-01&rft.volume=84&rft.issue=2&rft.spage=910&rft.epage=921&rft.pages=910-921&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(03)74908-X&rft_dat=%3Cproquest_pubme%3E287824591%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215717724&rft_id=info:pmid/12547773&rft_els_id=S000634950374908X&rfr_iscdi=true