Force Spectroscopy of the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction
Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2002-10, Vol.83 (4), p.2270-2279 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2279 |
---|---|
container_issue | 4 |
container_start_page | 2270 |
container_title | Biophysical journal |
container_volume | 83 |
creator | Zhang, Xiaohui Wojcikiewicz, Ewa Moy, Vincent T. |
description | Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg
2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier. |
doi_str_mv | 10.1016/S0006-3495(02)73987-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349502739878</els_id><sourcerecordid>230112201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-557ce6e51a3cd219f667db26165d4ba87008cdb196a01530c50fafffaf0746033</originalsourceid><addsrcrecordid>eNqFkU9vEzEQxS1ERdPARwCtOKBycDv2rr27F1BUEagUxKFwthzvbOOysVPbWynfHuePCvRSS5YP_s2befMIecvgggGTlzcAIGlZteIc-Me6bJuaNi_IhImKU4BGviSTR-SUnMV4B8C4APaKnDJe8iqfCfFzHwwWNxs0Kfho_GZb-L5IKywWOP72ZpuwmI_OJOsdncXojdUJu2Lmkr1FR9nltUuYNYZhHHQoZt0KY2aL735AMw5IWbEn9F7iNTnp9RDxzfGdkl_zLz-vvtHFj6_XV7MFNULIRIWoDUoUTJem46ztpay7JZdMiq5a6qbODk23ZK3UwEQJRkCv-z5fqCsJZTklnw66m3G5xs6gS0EPahPsWoet8tqq_3-cXalb_6BYCbzMklPy4SgQ_P2IMam1jTuX2qEfo6o540wInsH3T8A7PwaXzakM1NA2zW4ccYBMXnIM2D9OwkDt8lT7PNUuLAVc7fNUTa5796-Nv1XHADPw-QBgXuaDxaCisegMdjbkSFXn7TMt_gD6NbFz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215709883</pqid></control><display><type>article</type><title>Force Spectroscopy of the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zhang, Xiaohui ; Wojcikiewicz, Ewa ; Moy, Vincent T.</creator><creatorcontrib>Zhang, Xiaohui ; Wojcikiewicz, Ewa ; Moy, Vincent T.</creatorcontrib><description>Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg
2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(02)73987-8</identifier><identifier>PMID: 12324444</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cations ; Cell Adhesion ; Fibroblasts - metabolism ; Humans ; Intercellular Adhesion Molecule-1 - metabolism ; Kinetics ; Leukocytes ; Lymphocyte Function-Associated Antigen-1 - metabolism ; Mice ; Microscopy, Atomic Force - methods ; Models, Statistical ; Molecules ; Protein Binding ; Scientific imaging ; Thermodynamics ; Tumor Cells, Cultured</subject><ispartof>Biophysical journal, 2002-10, Vol.83 (4), p.2270-2279</ispartof><rights>2002 The Biophysical Society</rights><rights>Copyright Biophysical Society Oct 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-557ce6e51a3cd219f667db26165d4ba87008cdb196a01530c50fafffaf0746033</citedby><cites>FETCH-LOGICAL-c556t-557ce6e51a3cd219f667db26165d4ba87008cdb196a01530c50fafffaf0746033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302315/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(02)73987-8$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,3537,27905,27906,45976,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12324444$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Wojcikiewicz, Ewa</creatorcontrib><creatorcontrib>Moy, Vincent T.</creatorcontrib><title>Force Spectroscopy of the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg
2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.</description><subject>Animals</subject><subject>Cations</subject><subject>Cell Adhesion</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Intercellular Adhesion Molecule-1 - metabolism</subject><subject>Kinetics</subject><subject>Leukocytes</subject><subject>Lymphocyte Function-Associated Antigen-1 - metabolism</subject><subject>Mice</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Models, Statistical</subject><subject>Molecules</subject><subject>Protein Binding</subject><subject>Scientific imaging</subject><subject>Thermodynamics</subject><subject>Tumor Cells, Cultured</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU9vEzEQxS1ERdPARwCtOKBycDv2rr27F1BUEagUxKFwthzvbOOysVPbWynfHuePCvRSS5YP_s2befMIecvgggGTlzcAIGlZteIc-Me6bJuaNi_IhImKU4BGviSTR-SUnMV4B8C4APaKnDJe8iqfCfFzHwwWNxs0Kfho_GZb-L5IKywWOP72ZpuwmI_OJOsdncXojdUJu2Lmkr1FR9nltUuYNYZhHHQoZt0KY2aL735AMw5IWbEn9F7iNTnp9RDxzfGdkl_zLz-vvtHFj6_XV7MFNULIRIWoDUoUTJem46ztpay7JZdMiq5a6qbODk23ZK3UwEQJRkCv-z5fqCsJZTklnw66m3G5xs6gS0EPahPsWoet8tqq_3-cXalb_6BYCbzMklPy4SgQ_P2IMam1jTuX2qEfo6o540wInsH3T8A7PwaXzakM1NA2zW4ccYBMXnIM2D9OwkDt8lT7PNUuLAVc7fNUTa5796-Nv1XHADPw-QBgXuaDxaCisegMdjbkSFXn7TMt_gD6NbFz</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Zhang, Xiaohui</creator><creator>Wojcikiewicz, Ewa</creator><creator>Moy, Vincent T.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021001</creationdate><title>Force Spectroscopy of the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction</title><author>Zhang, Xiaohui ; Wojcikiewicz, Ewa ; Moy, Vincent T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-557ce6e51a3cd219f667db26165d4ba87008cdb196a01530c50fafffaf0746033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Cations</topic><topic>Cell Adhesion</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Intercellular Adhesion Molecule-1 - metabolism</topic><topic>Kinetics</topic><topic>Leukocytes</topic><topic>Lymphocyte Function-Associated Antigen-1 - metabolism</topic><topic>Mice</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Models, Statistical</topic><topic>Molecules</topic><topic>Protein Binding</topic><topic>Scientific imaging</topic><topic>Thermodynamics</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Wojcikiewicz, Ewa</creatorcontrib><creatorcontrib>Moy, Vincent T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xiaohui</au><au>Wojcikiewicz, Ewa</au><au>Moy, Vincent T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Force Spectroscopy of the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2002-10-01</date><risdate>2002</risdate><volume>83</volume><issue>4</issue><spage>2270</spage><epage>2279</epage><pages>2270-2279</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Interactions between leukocyte function-associated antigen-1 (LFA-1) with its cognate ligand, intercellular adhesion molecule-1 (ICAM-1) play a crucial role in leukocyte adhesion. Because the cell and its adhesive components are subject to external perturbation from the surrounding flow of blood, it is important to understand the binding properties of the LFA-1/ICAM-1 interaction in both steady state and in the presence of an external pulling force. Here we report on atomic force microscopy (AFM) measurements of the unbinding of LFA-1 from ICAM-1. The single molecule measurements revealed the energy landscape corresponding to the dissociation of the LFA-1/ICAM-1 complex and provided the basis for defining the energetic determinants of the complex at equilibrium and under the influence of an external force. The AFM force measurements were performed in an experimental system consisting of an LFA-1-expressing T cell hybridoma, 3A9, attached to the end of the AFM cantilever and an apposing surface expressing ICAM-1. In measurements covering three orders of magnitude change in force loading rate, the LFA-1/ICAM-1 force spectrum (i.e., unbinding force versus loading rate) revealed a fast and a slow loading regime that characterized a steep inner activation barrier and a wide outer activation barrier, respectively. The addition of Mg
2+, a cofactor that stabilizes the LFA-1/ICAM-1 interaction, elevated the unbinding force of the complex in the slow loading regime. In contrast, the presence of EDTA suppressed the inner barrier of the LFA-1/ICAM-1 complex. These results suggest that the equilibrium dissociation constant of the LFA-1/ICAM-1 interaction is regulated by the energetics of the outer activation barrier of the complex, while the ability of the complex to resist a pulling force is determined by the divalent cation-dependent inner activation barrier.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12324444</pmid><doi>10.1016/S0006-3495(02)73987-8</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2002-10, Vol.83 (4), p.2270-2279 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302315 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Cations Cell Adhesion Fibroblasts - metabolism Humans Intercellular Adhesion Molecule-1 - metabolism Kinetics Leukocytes Lymphocyte Function-Associated Antigen-1 - metabolism Mice Microscopy, Atomic Force - methods Models, Statistical Molecules Protein Binding Scientific imaging Thermodynamics Tumor Cells, Cultured |
title | Force Spectroscopy of the Leukocyte Function-Associated Antigen-1/Intercellular Adhesion Molecule-1 Interaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A16%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Force%20Spectroscopy%20of%20the%20Leukocyte%20Function-Associated%20Antigen-1/Intercellular%20Adhesion%20Molecule-1%20Interaction&rft.jtitle=Biophysical%20journal&rft.au=Zhang,%20Xiaohui&rft.date=2002-10-01&rft.volume=83&rft.issue=4&rft.spage=2270&rft.epage=2279&rft.pages=2270-2279&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(02)73987-8&rft_dat=%3Cproquest_pubme%3E230112201%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215709883&rft_id=info:pmid/12324444&rft_els_id=S0006349502739878&rfr_iscdi=true |