A Simple, Mechanistic Model for Directional Instability during Mitotic Chromosome Movements

During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule “tracks” as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2002-07, Vol.83 (1), p.42-58
Hauptverfasser: Joglekar, Ajit P., Hunt, Alan J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 42
container_title Biophysical journal
container_volume 83
creator Joglekar, Ajit P.
Hunt, Alan J.
description During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule “tracks” as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate and move to opposite spindle poles. These movements are often characterized by “directional instability” (a series of runs with approximately constant speed, punctuated by sudden reversals in the direction of movement). To understand mitosis, it is critical to describe the physical mechanisms that underlie the coordination of the forces that drive directional instability. We propose a simple mechanistic model that describes the origin of the forces that move chromosomes and the coordination of these forces to produce directional instability. The model demonstrates that forces, speeds, and direction of motion associated with prometaphase through anaphase chromosome movements can be predicted from the molecular kinetics of interactions between dynamic microtubules and arrays of microtubule binding sites that are linked to the chromosome by compliant elements.
doi_str_mv 10.1016/S0006-3495(02)75148-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349502751485</els_id><sourcerecordid>149030221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-a3a60c8d49e8ee6d45b59e9b2bc75caf2c4a0f655f845a91e7a45bc20c7b96273</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhEUARhwokAmMn48QXqmoLtFJXHAonDpbjTLquknixk5X69k12VwV64eSDv_8fez7GXnP4yIHLT9cAINMsV_gOxPsCeV6m-IQtOOYiBSjlU7Z4QI7YixhvAbhA4M_ZERdQAii1YL_OkmvXbVr6kKzIrk3v4uBssvI1tUnjQ3LuAtnB-d60yWUfB1O51g13ST0G198kKzf4ObBcB9_56DuaslvqqB_iS_asMW2kV4fzmP38-uXH8iK9-v7tcnl2lVpEOaQmMxJsWeeKSiJZ51ihIlWJyhZoTSNsbqCRiE2Zo1GcCjMhVoAtKiVFkR2zz_vezVh1VNtpdjCt3gTXmXCnvXH635verfWN32qegeBCTgUnh4Lgf48UB925aKltTU9-jLrgJaoMZvDtI_DWj2FaTdSCYwGqlDhBuIds8DEGah5ewkHP7vTOnZ7FaBB6507PuTd_f-NP6iBrAk73AE3L3DoKOlpHvaV650jX3v1nxD3x26qp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215709865</pqid></control><display><type>article</type><title>A Simple, Mechanistic Model for Directional Instability during Mitotic Chromosome Movements</title><source>PubMed (Medline)</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Joglekar, Ajit P. ; Hunt, Alan J.</creator><creatorcontrib>Joglekar, Ajit P. ; Hunt, Alan J.</creatorcontrib><description>During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule “tracks” as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate and move to opposite spindle poles. These movements are often characterized by “directional instability” (a series of runs with approximately constant speed, punctuated by sudden reversals in the direction of movement). To understand mitosis, it is critical to describe the physical mechanisms that underlie the coordination of the forces that drive directional instability. We propose a simple mechanistic model that describes the origin of the forces that move chromosomes and the coordination of these forces to produce directional instability. The model demonstrates that forces, speeds, and direction of motion associated with prometaphase through anaphase chromosome movements can be predicted from the molecular kinetics of interactions between dynamic microtubules and arrays of microtubule binding sites that are linked to the chromosome by compliant elements.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(02)75148-5</identifier><identifier>PMID: 12080099</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anaphase ; Binding Sites ; Biophysical Phenomena ; Biophysics ; Cell division ; Cellular biology ; Chromosomes - ultrastructure ; Dimerization ; Genetic engineering ; Genetics ; Kinetics ; Kinetochores ; Mitosis ; Models, Chemical ; Time Factors ; Tubulin - chemistry</subject><ispartof>Biophysical journal, 2002-07, Vol.83 (1), p.42-58</ispartof><rights>2002 The Biophysical Society</rights><rights>Copyright Biophysical Society Jul 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-a3a60c8d49e8ee6d45b59e9b2bc75caf2c4a0f655f845a91e7a45bc20c7b96273</citedby><cites>FETCH-LOGICAL-c556t-a3a60c8d49e8ee6d45b59e9b2bc75caf2c4a0f655f845a91e7a45bc20c7b96273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302126/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(02)75148-5$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12080099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joglekar, Ajit P.</creatorcontrib><creatorcontrib>Hunt, Alan J.</creatorcontrib><title>A Simple, Mechanistic Model for Directional Instability during Mitotic Chromosome Movements</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule “tracks” as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate and move to opposite spindle poles. These movements are often characterized by “directional instability” (a series of runs with approximately constant speed, punctuated by sudden reversals in the direction of movement). To understand mitosis, it is critical to describe the physical mechanisms that underlie the coordination of the forces that drive directional instability. We propose a simple mechanistic model that describes the origin of the forces that move chromosomes and the coordination of these forces to produce directional instability. The model demonstrates that forces, speeds, and direction of motion associated with prometaphase through anaphase chromosome movements can be predicted from the molecular kinetics of interactions between dynamic microtubules and arrays of microtubule binding sites that are linked to the chromosome by compliant elements.</description><subject>Anaphase</subject><subject>Binding Sites</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cell division</subject><subject>Cellular biology</subject><subject>Chromosomes - ultrastructure</subject><subject>Dimerization</subject><subject>Genetic engineering</subject><subject>Genetics</subject><subject>Kinetics</subject><subject>Kinetochores</subject><subject>Mitosis</subject><subject>Models, Chemical</subject><subject>Time Factors</subject><subject>Tubulin - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAQhi0EokvhEUARhwokAmMn48QXqmoLtFJXHAonDpbjTLquknixk5X69k12VwV64eSDv_8fez7GXnP4yIHLT9cAINMsV_gOxPsCeV6m-IQtOOYiBSjlU7Z4QI7YixhvAbhA4M_ZERdQAii1YL_OkmvXbVr6kKzIrk3v4uBssvI1tUnjQ3LuAtnB-d60yWUfB1O51g13ST0G198kKzf4ObBcB9_56DuaslvqqB_iS_asMW2kV4fzmP38-uXH8iK9-v7tcnl2lVpEOaQmMxJsWeeKSiJZ51ihIlWJyhZoTSNsbqCRiE2Zo1GcCjMhVoAtKiVFkR2zz_vezVh1VNtpdjCt3gTXmXCnvXH635verfWN32qegeBCTgUnh4Lgf48UB925aKltTU9-jLrgJaoMZvDtI_DWj2FaTdSCYwGqlDhBuIds8DEGah5ewkHP7vTOnZ7FaBB6507PuTd_f-NP6iBrAk73AE3L3DoKOlpHvaV650jX3v1nxD3x26qp</recordid><startdate>20020701</startdate><enddate>20020701</enddate><creator>Joglekar, Ajit P.</creator><creator>Hunt, Alan J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020701</creationdate><title>A Simple, Mechanistic Model for Directional Instability during Mitotic Chromosome Movements</title><author>Joglekar, Ajit P. ; Hunt, Alan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-a3a60c8d49e8ee6d45b59e9b2bc75caf2c4a0f655f845a91e7a45bc20c7b96273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Anaphase</topic><topic>Binding Sites</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cell division</topic><topic>Cellular biology</topic><topic>Chromosomes - ultrastructure</topic><topic>Dimerization</topic><topic>Genetic engineering</topic><topic>Genetics</topic><topic>Kinetics</topic><topic>Kinetochores</topic><topic>Mitosis</topic><topic>Models, Chemical</topic><topic>Time Factors</topic><topic>Tubulin - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joglekar, Ajit P.</creatorcontrib><creatorcontrib>Hunt, Alan J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joglekar, Ajit P.</au><au>Hunt, Alan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Simple, Mechanistic Model for Directional Instability during Mitotic Chromosome Movements</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2002-07-01</date><risdate>2002</risdate><volume>83</volume><issue>1</issue><spage>42</spage><epage>58</epage><pages>42-58</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule “tracks” as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate and move to opposite spindle poles. These movements are often characterized by “directional instability” (a series of runs with approximately constant speed, punctuated by sudden reversals in the direction of movement). To understand mitosis, it is critical to describe the physical mechanisms that underlie the coordination of the forces that drive directional instability. We propose a simple mechanistic model that describes the origin of the forces that move chromosomes and the coordination of these forces to produce directional instability. The model demonstrates that forces, speeds, and direction of motion associated with prometaphase through anaphase chromosome movements can be predicted from the molecular kinetics of interactions between dynamic microtubules and arrays of microtubule binding sites that are linked to the chromosome by compliant elements.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12080099</pmid><doi>10.1016/S0006-3495(02)75148-5</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2002-07, Vol.83 (1), p.42-58
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302126
source PubMed (Medline); MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals
subjects Anaphase
Binding Sites
Biophysical Phenomena
Biophysics
Cell division
Cellular biology
Chromosomes - ultrastructure
Dimerization
Genetic engineering
Genetics
Kinetics
Kinetochores
Mitosis
Models, Chemical
Time Factors
Tubulin - chemistry
title A Simple, Mechanistic Model for Directional Instability during Mitotic Chromosome Movements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A06%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Simple,%20Mechanistic%20Model%20for%20Directional%20Instability%20during%20Mitotic%20Chromosome%20Movements&rft.jtitle=Biophysical%20journal&rft.au=Joglekar,%20Ajit%20P.&rft.date=2002-07-01&rft.volume=83&rft.issue=1&rft.spage=42&rft.epage=58&rft.pages=42-58&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(02)75148-5&rft_dat=%3Cproquest_pubme%3E149030221%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215709865&rft_id=info:pmid/12080099&rft_els_id=S0006349502751485&rfr_iscdi=true