Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity

Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2002-04, Vol.82 (4), p.1930-1942
Hauptverfasser: Venkataramanan, L., Sigworth, F.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1942
container_issue 4
container_start_page 1930
container_title Biophysical journal
container_volume 82
creator Venkataramanan, L.
Sigworth, F.J.
description Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an “ H-noise” algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.
doi_str_mv 10.1016/S0006-3495(02)75542-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349502755422</els_id><sourcerecordid>118709592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-ff4902096d12e06bdef9be9cc9719fa5a7b59b5c2512ed6b0b243faa30295dff3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqHwE0AWBwSHhbE33o0voCgCWikVh8LZ8trjxsWxU3sTKf8ep4nKx4XTWJpnxvb7EPKSwXsGrPtwDQBd006leAv8XS_ElDf8EZmwwwFg1j0mkwfkjDwr5RaAcQHsKTljTLJuJtiELOebTdj7eEMvvLUY6ZXOP9OOXiWLodAx0XGFdB512BdfaHL0usIB6WWKdLHSMWKgczP6nR_3z8kTp0PBF6d6Tn58-fx9cdEsv329XMyXjZlKGBvnauEgO8s4QjdYdHJAaYzsmXRa6H4QchCGi9q33QADn7ZO6xa4FNa59px8PO7dbIc1WoNxzDqoTfZrnfcqaa_-7kS_Ujdpp1gLTM5kXfDmtCCnuy2WUa19MRiCjpi2RfU1RRB9W8HX_4C3aZtrGkVxJnroatIVEkfI5FRKRvfwEgbqIEvdy1IHEwq4upeleJ179ec3fk-d7FTg0xGoKnDnMatiPEaD1mc0o7LJ_-eKX0kbpE8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215706008</pqid></control><display><type>article</type><title>Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><creator>Venkataramanan, L. ; Sigworth, F.J.</creator><creatorcontrib>Venkataramanan, L. ; Sigworth, F.J.</creatorcontrib><description>Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an “ H-noise” algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(02)75542-2</identifier><identifier>PMID: 11916851</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Biophysics ; Biophysics - methods ; Ions ; Ions - chemistry ; Kinetics ; Likelihood Functions ; Markov analysis ; Markov Chains ; Membranes ; Models, Statistical ; Models, Theoretical ; Patch-Clamp Techniques ; Time Factors</subject><ispartof>Biophysical journal, 2002-04, Vol.82 (4), p.1930-1942</ispartof><rights>2002 The Biophysical Society</rights><rights>Copyright Biophysical Society Apr 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-ff4902096d12e06bdef9be9cc9719fa5a7b59b5c2512ed6b0b243faa30295dff3</citedby><cites>FETCH-LOGICAL-c490t-ff4902096d12e06bdef9be9cc9719fa5a7b59b5c2512ed6b0b243faa30295dff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301989/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(02)75542-2$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11916851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkataramanan, L.</creatorcontrib><creatorcontrib>Sigworth, F.J.</creatorcontrib><title>Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an “ H-noise” algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.</description><subject>Algorithms</subject><subject>Biophysics</subject><subject>Biophysics - methods</subject><subject>Ions</subject><subject>Ions - chemistry</subject><subject>Kinetics</subject><subject>Likelihood Functions</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Membranes</subject><subject>Models, Statistical</subject><subject>Models, Theoretical</subject><subject>Patch-Clamp Techniques</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1vEzEQhi0EoqHwE0AWBwSHhbE33o0voCgCWikVh8LZ8trjxsWxU3sTKf8ep4nKx4XTWJpnxvb7EPKSwXsGrPtwDQBd006leAv8XS_ElDf8EZmwwwFg1j0mkwfkjDwr5RaAcQHsKTljTLJuJtiELOebTdj7eEMvvLUY6ZXOP9OOXiWLodAx0XGFdB512BdfaHL0usIB6WWKdLHSMWKgczP6nR_3z8kTp0PBF6d6Tn58-fx9cdEsv329XMyXjZlKGBvnauEgO8s4QjdYdHJAaYzsmXRa6H4QchCGi9q33QADn7ZO6xa4FNa59px8PO7dbIc1WoNxzDqoTfZrnfcqaa_-7kS_Ujdpp1gLTM5kXfDmtCCnuy2WUa19MRiCjpi2RfU1RRB9W8HX_4C3aZtrGkVxJnroatIVEkfI5FRKRvfwEgbqIEvdy1IHEwq4upeleJ179ec3fk-d7FTg0xGoKnDnMatiPEaD1mc0o7LJ_-eKX0kbpE8</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>Venkataramanan, L.</creator><creator>Sigworth, F.J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020401</creationdate><title>Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity</title><author>Venkataramanan, L. ; Sigworth, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-ff4902096d12e06bdef9be9cc9719fa5a7b59b5c2512ed6b0b243faa30295dff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Biophysics</topic><topic>Biophysics - methods</topic><topic>Ions</topic><topic>Ions - chemistry</topic><topic>Kinetics</topic><topic>Likelihood Functions</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Membranes</topic><topic>Models, Statistical</topic><topic>Models, Theoretical</topic><topic>Patch-Clamp Techniques</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkataramanan, L.</creatorcontrib><creatorcontrib>Sigworth, F.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkataramanan, L.</au><au>Sigworth, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>82</volume><issue>4</issue><spage>1930</spage><epage>1942</epage><pages>1930-1942</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Hidden Markov models have recently been used to model single ion channel currents as recorded with the patch clamp technique from cell membranes. The estimation of hidden Markov models parameters using the forward-backward and Baum-Welch algorithms can be performed at signal to noise ratios that are too low for conventional single channel kinetic analysis; however, the application of these algorithms relies on the assumptions that the background noise be white and that the underlying state transitions occur at discrete times. To address these issues, we present an “ H-noise” algorithm that accounts for correlated background noise and the randomness of sampling relative to transitions. We also discuss three issues that arise in the practical application of the algorithm in analyzing single channel data. First, we describe a digital inverse filter that removes the effects of the analog antialiasing filter and yields a sharp frequency roll-off. This enhances the performance while reducing the computational intensity of the algorithm. Second, the data may be contaminated with baseline drifts or deterministic interferences such as 60-Hz pickup. We propose an extension of previous results to consider baseline drift. Finally, we describe the extension of the algorithm to multiple data sets.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11916851</pmid><doi>10.1016/S0006-3495(02)75542-2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2002-04, Vol.82 (4), p.1930-1942
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301989
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); PubMed Central
subjects Algorithms
Biophysics
Biophysics - methods
Ions
Ions - chemistry
Kinetics
Likelihood Functions
Markov analysis
Markov Chains
Membranes
Models, Statistical
Models, Theoretical
Patch-Clamp Techniques
Time Factors
title Applying Hidden Markov Models to the Analysis of Single Ion Channel Activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Hidden%20Markov%20Models%20to%20the%20Analysis%20of%20Single%20Ion%20Channel%20Activity&rft.jtitle=Biophysical%20journal&rft.au=Venkataramanan,%20L.&rft.date=2002-04-01&rft.volume=82&rft.issue=4&rft.spage=1930&rft.epage=1942&rft.pages=1930-1942&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(02)75542-2&rft_dat=%3Cproquest_pubme%3E118709592%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215706008&rft_id=info:pmid/11916851&rft_els_id=S0006349502755422&rfr_iscdi=true