Stability Diagram and Unfolding of a Modified Cytochrome c: What Happens in the Transformation Regime?
We determined the stability diagram of a modified cytochrome c protein in a glycerol water mixture by measuring the first and the second moment of the fluorescence from the chromophore as a function of temperature and pressure. Temperature and pressure were varied between 273 and 363 K and 0.0001 an...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2002-03, Vol.82 (3), p.1644-1653 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1653 |
---|---|
container_issue | 3 |
container_start_page | 1644 |
container_title | Biophysical journal |
container_volume | 82 |
creator | Lesch, Harald Stadlbauer, Hans Friedrich, Josef Vanderkooi, Jane M. |
description | We determined the stability diagram of a modified cytochrome
c protein in a glycerol water mixture by measuring the first and the second moment of the fluorescence from the chromophore as a function of temperature and pressure. Temperature and pressure were varied between 273 and 363
K and 0.0001 and 1
GPa, respectively. The shift of the fluorescence maximum showed a characteristic sigmoid-like pattern from which information on the microscopic processes during unfolding is obtained: as the transformation regime is entered, the fluorescence shows a significant blue shift. The conclusion is that water molecules get into contact with the chromophore. They lead to strong electrostatic contributions in the solvent shift, which counteract the red shifting dispersion interactions. Assuming that there are just two relevant states that determine the stability diagram, the complete set of thermodynamic parameters can be determined from the data. However, under certain pressure–temperature conditions the fluorescence pattern is more complicated, pointing toward reentrant transitions and, possibly, to consecutive steps in the unfolding process. |
doi_str_mv | 10.1016/S0006-3495(02)75515-X |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000634950275515X</els_id><sourcerecordid>71527648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-a7b082939613112c40d331f2af9d1720b08262b0cd9b8f79463abddd195a3f3c3</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqHwE0AWBwSHLR577d3lQIVCS5GKkGgrerO8_khc7drBdirl37NpolK4cPJhnnnHMw9CL4EcAQHx_oIQIipWd_wtoe8azoFX14_QDHhNK0Ja8RjN7pED9CznG0KAcgJP0QFAK5q6ETPkLorq_eDLBn_2apHUiFUw-Cq4OBgfFjg6rPC3aLzz1uD5pkS9THG0WH_AP5eq4DO1WtmQsQ-4LC2-TCpkF9Ooio8B_7ALP9rj5-iJU0O2L_bvIbo6Pbmcn1Xn3798nX86r3TdkVKppict7VgngAFQXRPDGDiqXGegoWRbFbQn2nR965quFkz1xhjouGKOaXaIPu5yV-t-tEbbUJIa5Cr5UaWNjMrLvyvBL-Ui3kpgBDpBp4A3-4AUf61tLnL0WdthUMHGdZYNcNqIup3A1_-AN3GdwrScpMAbqBllE8R3kE4x52Td_U-AyK1GeadRbh1JQuWdRnk99b16uMafrr23CTjeAXY65q23SWbtbdDW-GR1kSb6_4z4DdYSrSM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215714323</pqid></control><display><type>article</type><title>Stability Diagram and Unfolding of a Modified Cytochrome c: What Happens in the Transformation Regime?</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lesch, Harald ; Stadlbauer, Hans ; Friedrich, Josef ; Vanderkooi, Jane M.</creator><creatorcontrib>Lesch, Harald ; Stadlbauer, Hans ; Friedrich, Josef ; Vanderkooi, Jane M.</creatorcontrib><description>We determined the stability diagram of a modified cytochrome
c protein in a glycerol water mixture by measuring the first and the second moment of the fluorescence from the chromophore as a function of temperature and pressure. Temperature and pressure were varied between 273 and 363
K and 0.0001 and 1
GPa, respectively. The shift of the fluorescence maximum showed a characteristic sigmoid-like pattern from which information on the microscopic processes during unfolding is obtained: as the transformation regime is entered, the fluorescence shows a significant blue shift. The conclusion is that water molecules get into contact with the chromophore. They lead to strong electrostatic contributions in the solvent shift, which counteract the red shifting dispersion interactions. Assuming that there are just two relevant states that determine the stability diagram, the complete set of thermodynamic parameters can be determined from the data. However, under certain pressure–temperature conditions the fluorescence pattern is more complicated, pointing toward reentrant transitions and, possibly, to consecutive steps in the unfolding process.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(02)75515-X</identifier><identifier>PMID: 11867476</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Cytochrome c Group - chemistry ; Fluorescence ; Horses ; Kinetics ; Protein Denaturation ; Protein Folding ; Proteins ; Spectrophotometry ; Temperature ; Thermodynamics ; Zinc - chemistry</subject><ispartof>Biophysical journal, 2002-03, Vol.82 (3), p.1644-1653</ispartof><rights>2002 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-a7b082939613112c40d331f2af9d1720b08262b0cd9b8f79463abddd195a3f3c3</citedby><cites>FETCH-LOGICAL-c490t-a7b082939613112c40d331f2af9d1720b08262b0cd9b8f79463abddd195a3f3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301962/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S000634950275515X$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11867476$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lesch, Harald</creatorcontrib><creatorcontrib>Stadlbauer, Hans</creatorcontrib><creatorcontrib>Friedrich, Josef</creatorcontrib><creatorcontrib>Vanderkooi, Jane M.</creatorcontrib><title>Stability Diagram and Unfolding of a Modified Cytochrome c: What Happens in the Transformation Regime?</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We determined the stability diagram of a modified cytochrome
c protein in a glycerol water mixture by measuring the first and the second moment of the fluorescence from the chromophore as a function of temperature and pressure. Temperature and pressure were varied between 273 and 363
K and 0.0001 and 1
GPa, respectively. The shift of the fluorescence maximum showed a characteristic sigmoid-like pattern from which information on the microscopic processes during unfolding is obtained: as the transformation regime is entered, the fluorescence shows a significant blue shift. The conclusion is that water molecules get into contact with the chromophore. They lead to strong electrostatic contributions in the solvent shift, which counteract the red shifting dispersion interactions. Assuming that there are just two relevant states that determine the stability diagram, the complete set of thermodynamic parameters can be determined from the data. However, under certain pressure–temperature conditions the fluorescence pattern is more complicated, pointing toward reentrant transitions and, possibly, to consecutive steps in the unfolding process.</description><subject>Animals</subject><subject>Cytochrome c Group - chemistry</subject><subject>Fluorescence</subject><subject>Horses</subject><subject>Kinetics</subject><subject>Protein Denaturation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Spectrophotometry</subject><subject>Temperature</subject><subject>Thermodynamics</subject><subject>Zinc - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1vEzEQhi0EoqHwE0AWBwSHLR577d3lQIVCS5GKkGgrerO8_khc7drBdirl37NpolK4cPJhnnnHMw9CL4EcAQHx_oIQIipWd_wtoe8azoFX14_QDHhNK0Ja8RjN7pED9CznG0KAcgJP0QFAK5q6ETPkLorq_eDLBn_2apHUiFUw-Cq4OBgfFjg6rPC3aLzz1uD5pkS9THG0WH_AP5eq4DO1WtmQsQ-4LC2-TCpkF9Ooio8B_7ALP9rj5-iJU0O2L_bvIbo6Pbmcn1Xn3798nX86r3TdkVKppict7VgngAFQXRPDGDiqXGegoWRbFbQn2nR965quFkz1xhjouGKOaXaIPu5yV-t-tEbbUJIa5Cr5UaWNjMrLvyvBL-Ui3kpgBDpBp4A3-4AUf61tLnL0WdthUMHGdZYNcNqIup3A1_-AN3GdwrScpMAbqBllE8R3kE4x52Td_U-AyK1GeadRbh1JQuWdRnk99b16uMafrr23CTjeAXY65q23SWbtbdDW-GR1kSb6_4z4DdYSrSM</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Lesch, Harald</creator><creator>Stadlbauer, Hans</creator><creator>Friedrich, Josef</creator><creator>Vanderkooi, Jane M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020301</creationdate><title>Stability Diagram and Unfolding of a Modified Cytochrome c: What Happens in the Transformation Regime?</title><author>Lesch, Harald ; Stadlbauer, Hans ; Friedrich, Josef ; Vanderkooi, Jane M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-a7b082939613112c40d331f2af9d1720b08262b0cd9b8f79463abddd195a3f3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Cytochrome c Group - chemistry</topic><topic>Fluorescence</topic><topic>Horses</topic><topic>Kinetics</topic><topic>Protein Denaturation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Spectrophotometry</topic><topic>Temperature</topic><topic>Thermodynamics</topic><topic>Zinc - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lesch, Harald</creatorcontrib><creatorcontrib>Stadlbauer, Hans</creatorcontrib><creatorcontrib>Friedrich, Josef</creatorcontrib><creatorcontrib>Vanderkooi, Jane M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lesch, Harald</au><au>Stadlbauer, Hans</au><au>Friedrich, Josef</au><au>Vanderkooi, Jane M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Diagram and Unfolding of a Modified Cytochrome c: What Happens in the Transformation Regime?</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2002-03-01</date><risdate>2002</risdate><volume>82</volume><issue>3</issue><spage>1644</spage><epage>1653</epage><pages>1644-1653</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We determined the stability diagram of a modified cytochrome
c protein in a glycerol water mixture by measuring the first and the second moment of the fluorescence from the chromophore as a function of temperature and pressure. Temperature and pressure were varied between 273 and 363
K and 0.0001 and 1
GPa, respectively. The shift of the fluorescence maximum showed a characteristic sigmoid-like pattern from which information on the microscopic processes during unfolding is obtained: as the transformation regime is entered, the fluorescence shows a significant blue shift. The conclusion is that water molecules get into contact with the chromophore. They lead to strong electrostatic contributions in the solvent shift, which counteract the red shifting dispersion interactions. Assuming that there are just two relevant states that determine the stability diagram, the complete set of thermodynamic parameters can be determined from the data. However, under certain pressure–temperature conditions the fluorescence pattern is more complicated, pointing toward reentrant transitions and, possibly, to consecutive steps in the unfolding process.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11867476</pmid><doi>10.1016/S0006-3495(02)75515-X</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2002-03, Vol.82 (3), p.1644-1653 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301962 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Cytochrome c Group - chemistry Fluorescence Horses Kinetics Protein Denaturation Protein Folding Proteins Spectrophotometry Temperature Thermodynamics Zinc - chemistry |
title | Stability Diagram and Unfolding of a Modified Cytochrome c: What Happens in the Transformation Regime? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Diagram%20and%20Unfolding%20of%20a%20Modified%20Cytochrome%20c:%20What%20Happens%20in%20the%20Transformation%20Regime?&rft.jtitle=Biophysical%20journal&rft.au=Lesch,%20Harald&rft.date=2002-03-01&rft.volume=82&rft.issue=3&rft.spage=1644&rft.epage=1653&rft.pages=1644-1653&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(02)75515-X&rft_dat=%3Cproquest_pubme%3E71527648%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215714323&rft_id=info:pmid/11867476&rft_els_id=S000634950275515X&rfr_iscdi=true |