Insertion and Pore Formation Driven by Adsorption of Proteins Onto Lipid Bilayer Membrane–Water Interfaces

We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane–water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2001-11, Vol.81 (5), p.2458-2472
Hauptverfasser: Zuckermann, Martin J., Heimburg, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2472
container_issue 5
container_start_page 2458
container_title Biophysical journal
container_volume 81
creator Zuckermann, Martin J.
Heimburg, Thomas
description We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane–water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the adsorption process using scaled particle theory. The adsorbed proteins form a two-dimensional “surface gas” at the lipid bilayer membrane–water interface that exerts a lateral pressure on the lipid bilayer membrane. Under conditions of strong intrinsic binding and a high degree of interfacial converge, this pressure can become high enough to overcome the energy barrier for protein insertion. Under these conditions, a subtle equilibrium exists between the adsorbed and inserted proteins. We propose that this provides a control mechanism for reversible insertion and pore formation of proteins such as melittin and magainin. Next, we discuss experimental data for the binding isotherms of cytochrome c to charged lipid membranes in the light of our theory and predict that cytochrome c inserts into charged lipid bilayers at low ionic strength. This prediction is supported by titration calorimetry results that are reported here. We were furthermore able to describe the observed binding isotherms of the pore-forming peptides endotoxin ( α5-helix) and of pardaxin to zwitterionic vesicles from our theory by assuming adsorption/insertion equilibrium.
doi_str_mv 10.1016/S0006-3495(01)75892-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349501758924</els_id><sourcerecordid>89352430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-db845d9865c73adb8df43202b380635095390da7bccf8a03c6c7a50f9fb07053</originalsourceid><addsrcrecordid>eNqFkc9OGzEQxq2qVUkpj0Bl9VQO247ttXf30goo0EipQAKJo-W1Z8EosYO9iZRb36FvyJOw-SPannqx5c-_-WY0HyGHDD4zYOrLNQCoQpSN_ATsqJJ1w4vyFRkxWfICoFavyegF2SPvcn4AYFwCe0v2GFOguOIjMh2HjKn3MVATHL2KCel5TDOzkb4nv8RA2xU9djmm-UaMHb1KsUcfMr0MfaQTP_eOnvipWWGiP3HWJhPw6dfvW9MPwjgMZ2cs5vfkTWemGQ929z65OT-7Of1RTC4vxqfHk8JKqfrCtXUpXVMraSthhpfrSsGBt6IGJSQ0UjTgTNVa29UGhFW2MhK6pmuhAin2ydet7XzRztBZDH0yUz1PfmbSSkfj9b8_wd_ru7jUTACrmBoMPu4MUnxcYO71Q1ykMIysOZMVg4qXAyS3kE0x54TdSwMGeh2R3kSk1_vXwPQmIr2u-_D3dH-qdpkMwLctgMOKlh6TztZjsOh8QttrF_1_WjwD1RqjSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215710724</pqid></control><display><type>article</type><title>Insertion and Pore Formation Driven by Adsorption of Proteins Onto Lipid Bilayer Membrane–Water Interfaces</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Zuckermann, Martin J. ; Heimburg, Thomas</creator><creatorcontrib>Zuckermann, Martin J. ; Heimburg, Thomas</creatorcontrib><description>We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane–water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the adsorption process using scaled particle theory. The adsorbed proteins form a two-dimensional “surface gas” at the lipid bilayer membrane–water interface that exerts a lateral pressure on the lipid bilayer membrane. Under conditions of strong intrinsic binding and a high degree of interfacial converge, this pressure can become high enough to overcome the energy barrier for protein insertion. Under these conditions, a subtle equilibrium exists between the adsorbed and inserted proteins. We propose that this provides a control mechanism for reversible insertion and pore formation of proteins such as melittin and magainin. Next, we discuss experimental data for the binding isotherms of cytochrome c to charged lipid membranes in the light of our theory and predict that cytochrome c inserts into charged lipid bilayers at low ionic strength. This prediction is supported by titration calorimetry results that are reported here. We were furthermore able to describe the observed binding isotherms of the pore-forming peptides endotoxin ( α5-helix) and of pardaxin to zwitterionic vesicles from our theory by assuming adsorption/insertion equilibrium.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(01)75892-4</identifier><identifier>PMID: 11606262</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adsorption ; Animals ; Binding Sites - physiology ; Biochemistry ; Calorimetry - methods ; Cytochrome c Group - metabolism ; Endotoxins - metabolism ; Fish Venoms - metabolism ; Lipid Bilayers - metabolism ; Lipids ; Membranes ; Models, Biological ; Peptides ; Porins - metabolism ; Proteins ; Proteins - metabolism ; Water - metabolism</subject><ispartof>Biophysical journal, 2001-11, Vol.81 (5), p.2458-2472</ispartof><rights>2001 The Biophysical Society</rights><rights>Copyright Biophysical Society Nov 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-db845d9865c73adb8df43202b380635095390da7bccf8a03c6c7a50f9fb07053</citedby><cites>FETCH-LOGICAL-c556t-db845d9865c73adb8df43202b380635095390da7bccf8a03c6c7a50f9fb07053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301716/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(01)75892-4$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,45974,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11606262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zuckermann, Martin J.</creatorcontrib><creatorcontrib>Heimburg, Thomas</creatorcontrib><title>Insertion and Pore Formation Driven by Adsorption of Proteins Onto Lipid Bilayer Membrane–Water Interfaces</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane–water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the adsorption process using scaled particle theory. The adsorbed proteins form a two-dimensional “surface gas” at the lipid bilayer membrane–water interface that exerts a lateral pressure on the lipid bilayer membrane. Under conditions of strong intrinsic binding and a high degree of interfacial converge, this pressure can become high enough to overcome the energy barrier for protein insertion. Under these conditions, a subtle equilibrium exists between the adsorbed and inserted proteins. We propose that this provides a control mechanism for reversible insertion and pore formation of proteins such as melittin and magainin. Next, we discuss experimental data for the binding isotherms of cytochrome c to charged lipid membranes in the light of our theory and predict that cytochrome c inserts into charged lipid bilayers at low ionic strength. This prediction is supported by titration calorimetry results that are reported here. We were furthermore able to describe the observed binding isotherms of the pore-forming peptides endotoxin ( α5-helix) and of pardaxin to zwitterionic vesicles from our theory by assuming adsorption/insertion equilibrium.</description><subject>Adsorption</subject><subject>Animals</subject><subject>Binding Sites - physiology</subject><subject>Biochemistry</subject><subject>Calorimetry - methods</subject><subject>Cytochrome c Group - metabolism</subject><subject>Endotoxins - metabolism</subject><subject>Fish Venoms - metabolism</subject><subject>Lipid Bilayers - metabolism</subject><subject>Lipids</subject><subject>Membranes</subject><subject>Models, Biological</subject><subject>Peptides</subject><subject>Porins - metabolism</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Water - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9OGzEQxq2qVUkpj0Bl9VQO247ttXf30goo0EipQAKJo-W1Z8EosYO9iZRb36FvyJOw-SPannqx5c-_-WY0HyGHDD4zYOrLNQCoQpSN_ATsqJJ1w4vyFRkxWfICoFavyegF2SPvcn4AYFwCe0v2GFOguOIjMh2HjKn3MVATHL2KCel5TDOzkb4nv8RA2xU9djmm-UaMHb1KsUcfMr0MfaQTP_eOnvipWWGiP3HWJhPw6dfvW9MPwjgMZ2cs5vfkTWemGQ929z65OT-7Of1RTC4vxqfHk8JKqfrCtXUpXVMraSthhpfrSsGBt6IGJSQ0UjTgTNVa29UGhFW2MhK6pmuhAin2ydet7XzRztBZDH0yUz1PfmbSSkfj9b8_wd_ru7jUTACrmBoMPu4MUnxcYO71Q1ykMIysOZMVg4qXAyS3kE0x54TdSwMGeh2R3kSk1_vXwPQmIr2u-_D3dH-qdpkMwLctgMOKlh6TztZjsOh8QttrF_1_WjwD1RqjSg</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Zuckermann, Martin J.</creator><creator>Heimburg, Thomas</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20011101</creationdate><title>Insertion and Pore Formation Driven by Adsorption of Proteins Onto Lipid Bilayer Membrane–Water Interfaces</title><author>Zuckermann, Martin J. ; Heimburg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-db845d9865c73adb8df43202b380635095390da7bccf8a03c6c7a50f9fb07053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adsorption</topic><topic>Animals</topic><topic>Binding Sites - physiology</topic><topic>Biochemistry</topic><topic>Calorimetry - methods</topic><topic>Cytochrome c Group - metabolism</topic><topic>Endotoxins - metabolism</topic><topic>Fish Venoms - metabolism</topic><topic>Lipid Bilayers - metabolism</topic><topic>Lipids</topic><topic>Membranes</topic><topic>Models, Biological</topic><topic>Peptides</topic><topic>Porins - metabolism</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zuckermann, Martin J.</creatorcontrib><creatorcontrib>Heimburg, Thomas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zuckermann, Martin J.</au><au>Heimburg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Insertion and Pore Formation Driven by Adsorption of Proteins Onto Lipid Bilayer Membrane–Water Interfaces</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>81</volume><issue>5</issue><spage>2458</spage><epage>2472</epage><pages>2458-2472</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We describe the binding of proteins to lipid bilayers in the case for which binding can occur either by adsorption to the lipid bilayer membrane–water interface or by direct insertion into the bilayer itself. We examine in particular the case when the insertion and pore formation are driven by the adsorption process using scaled particle theory. The adsorbed proteins form a two-dimensional “surface gas” at the lipid bilayer membrane–water interface that exerts a lateral pressure on the lipid bilayer membrane. Under conditions of strong intrinsic binding and a high degree of interfacial converge, this pressure can become high enough to overcome the energy barrier for protein insertion. Under these conditions, a subtle equilibrium exists between the adsorbed and inserted proteins. We propose that this provides a control mechanism for reversible insertion and pore formation of proteins such as melittin and magainin. Next, we discuss experimental data for the binding isotherms of cytochrome c to charged lipid membranes in the light of our theory and predict that cytochrome c inserts into charged lipid bilayers at low ionic strength. This prediction is supported by titration calorimetry results that are reported here. We were furthermore able to describe the observed binding isotherms of the pore-forming peptides endotoxin ( α5-helix) and of pardaxin to zwitterionic vesicles from our theory by assuming adsorption/insertion equilibrium.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11606262</pmid><doi>10.1016/S0006-3495(01)75892-4</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2001-11, Vol.81 (5), p.2458-2472
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301716
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adsorption
Animals
Binding Sites - physiology
Biochemistry
Calorimetry - methods
Cytochrome c Group - metabolism
Endotoxins - metabolism
Fish Venoms - metabolism
Lipid Bilayers - metabolism
Lipids
Membranes
Models, Biological
Peptides
Porins - metabolism
Proteins
Proteins - metabolism
Water - metabolism
title Insertion and Pore Formation Driven by Adsorption of Proteins Onto Lipid Bilayer Membrane–Water Interfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T16%3A25%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Insertion%20and%20Pore%20Formation%20Driven%20by%20Adsorption%20of%20Proteins%20Onto%20Lipid%20Bilayer%20Membrane%E2%80%93Water%20Interfaces&rft.jtitle=Biophysical%20journal&rft.au=Zuckermann,%20Martin%20J.&rft.date=2001-11-01&rft.volume=81&rft.issue=5&rft.spage=2458&rft.epage=2472&rft.pages=2458-2472&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(01)75892-4&rft_dat=%3Cproquest_pubme%3E89352430%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215710724&rft_id=info:pmid/11606262&rft_els_id=S0006349501758924&rfr_iscdi=true