A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation
Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa V1.4 channels occurs with a higher probability than hNa V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using t...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2001-05, Vol.80 (5), p.2221-2230 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2230 |
---|---|
container_issue | 5 |
container_start_page | 2221 |
container_title | Biophysical journal |
container_volume | 80 |
creator | Vilin, Yuriy Y. Fujimoto, Esther Ruben, Peter C. |
description | Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa
V1.4 channels occurs with a higher probability than hNa
V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa
V1.5 and hNa
V1.4 channels into chimerical constructs expressed in
Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa
V1.4 with isoleucine from the corresponding position (891) in hNa
V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa
V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa
V1.4 and I891in hNa
V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa
V1.4 and hNa
V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [
τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions. |
doi_str_mv | 10.1016/S0006-3495(01)76195-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349501761954</els_id><sourcerecordid>73095645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhEUAWJ1AVmHHseHMpqhZKKxWQWDhbjj3pumSdYidb8fbNdlelnDj54M_f_J6fsZcI7xCwer8EgKooZa3eAL7VFdaqkI_YDJUUBcC8esxm98gBe5bzFQAKBfiUHSCWQmmhZmx1wpchXnbEv1MOfiT-MbQtJYpDsANl3tBwQxT52bi2kS9s8sE6bqPny1_U0WA7_mXMbhJ8tfyIL1Y2Rur4sutv-Hm0bggbO4Q-PmdPWttlerE_D9nP008_FmfFxbfP54uTi8LJGoaiBE1eKCsRqalqFG7egK9KAX6K5awmh61SDbSkXaU0-FJijZr0XDtZUnnIjnfe67FZk3fTR5LtzHUKa5v-mN4G8-9NDCtz2W8MloAS5SR4vRek_vdIeTBX_ZjilNkIVBqVqKsJUjvIpT7nRO39AASz7cfc9WO2yzeA5q4fs5W_epju76t9IRPwYQfQtKNNoGSyCxQd-ZDIDcb34T8jbgGoGqBR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215715296</pqid></control><display><type>article</type><title>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Vilin, Yuriy Y. ; Fujimoto, Esther ; Ruben, Peter C.</creator><creatorcontrib>Vilin, Yuriy Y. ; Fujimoto, Esther ; Ruben, Peter C.</creatorcontrib><description>Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa
V1.4 channels occurs with a higher probability than hNa
V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa
V1.5 and hNa
V1.4 channels into chimerical constructs expressed in
Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa
V1.4 with isoleucine from the corresponding position (891) in hNa
V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa
V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa
V1.4 and I891in hNa
V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa
V1.4 and hNa
V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [
τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(01)76195-4</identifier><identifier>PMID: 11325725</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Electrophysiology ; Heart ; Humans ; Isoleucine - chemistry ; Kinetics ; Models, Biological ; Molecular biology ; Molecular Sequence Data ; Muscle, Skeletal - metabolism ; Muscular system ; Mutagenesis, Site-Directed ; Mutation ; Myocardium - metabolism ; Oocytes - metabolism ; Protein Isoforms ; Protein Structure, Tertiary ; Sodium ; Sodium Channels - chemistry ; Sodium Channels - genetics ; Valine - chemistry ; Xenopus</subject><ispartof>Biophysical journal, 2001-05, Vol.80 (5), p.2221-2230</ispartof><rights>2001 The Biophysical Society</rights><rights>Copyright Biophysical Society May 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</citedby><cites>FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301414/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(01)76195-4$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11325725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilin, Yuriy Y.</creatorcontrib><creatorcontrib>Fujimoto, Esther</creatorcontrib><creatorcontrib>Ruben, Peter C.</creatorcontrib><title>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa
V1.4 channels occurs with a higher probability than hNa
V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa
V1.5 and hNa
V1.4 channels into chimerical constructs expressed in
Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa
V1.4 with isoleucine from the corresponding position (891) in hNa
V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa
V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa
V1.4 and I891in hNa
V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa
V1.4 and hNa
V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [
τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Electrophysiology</subject><subject>Heart</subject><subject>Humans</subject><subject>Isoleucine - chemistry</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular system</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Myocardium - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Protein Isoforms</subject><subject>Protein Structure, Tertiary</subject><subject>Sodium</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - genetics</subject><subject>Valine - chemistry</subject><subject>Xenopus</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAQhi0EokvhEUAWJ1AVmHHseHMpqhZKKxWQWDhbjj3pumSdYidb8fbNdlelnDj54M_f_J6fsZcI7xCwer8EgKooZa3eAL7VFdaqkI_YDJUUBcC8esxm98gBe5bzFQAKBfiUHSCWQmmhZmx1wpchXnbEv1MOfiT-MbQtJYpDsANl3tBwQxT52bi2kS9s8sE6bqPny1_U0WA7_mXMbhJ8tfyIL1Y2Rur4sutv-Hm0bggbO4Q-PmdPWttlerE_D9nP008_FmfFxbfP54uTi8LJGoaiBE1eKCsRqalqFG7egK9KAX6K5awmh61SDbSkXaU0-FJijZr0XDtZUnnIjnfe67FZk3fTR5LtzHUKa5v-mN4G8-9NDCtz2W8MloAS5SR4vRek_vdIeTBX_ZjilNkIVBqVqKsJUjvIpT7nRO39AASz7cfc9WO2yzeA5q4fs5W_epju76t9IRPwYQfQtKNNoGSyCxQd-ZDIDcb34T8jbgGoGqBR</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Vilin, Yuriy Y.</creator><creator>Fujimoto, Esther</creator><creator>Ruben, Peter C.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20010501</creationdate><title>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</title><author>Vilin, Yuriy Y. ; Fujimoto, Esther ; Ruben, Peter C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Electrophysiology</topic><topic>Heart</topic><topic>Humans</topic><topic>Isoleucine - chemistry</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular system</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Myocardium - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Protein Isoforms</topic><topic>Protein Structure, Tertiary</topic><topic>Sodium</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - genetics</topic><topic>Valine - chemistry</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilin, Yuriy Y.</creatorcontrib><creatorcontrib>Fujimoto, Esther</creatorcontrib><creatorcontrib>Ruben, Peter C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilin, Yuriy Y.</au><au>Fujimoto, Esther</au><au>Ruben, Peter C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>80</volume><issue>5</issue><spage>2221</spage><epage>2230</epage><pages>2221-2230</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa
V1.4 channels occurs with a higher probability than hNa
V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa
V1.5 and hNa
V1.4 channels into chimerical constructs expressed in
Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa
V1.4 with isoleucine from the corresponding position (891) in hNa
V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa
V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa
V1.4 and I891in hNa
V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa
V1.4 and hNa
V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [
τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11325725</pmid><doi>10.1016/S0006-3495(01)76195-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2001-05, Vol.80 (5), p.2221-2230 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301414 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central |
subjects | Amino Acid Sequence Animals Electrophysiology Heart Humans Isoleucine - chemistry Kinetics Models, Biological Molecular biology Molecular Sequence Data Muscle, Skeletal - metabolism Muscular system Mutagenesis, Site-Directed Mutation Myocardium - metabolism Oocytes - metabolism Protein Isoforms Protein Structure, Tertiary Sodium Sodium Channels - chemistry Sodium Channels - genetics Valine - chemistry Xenopus |
title | A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Single%20Residue%20Differentiates%20between%20Human%20Cardiac%20and%20Skeletal%20Muscle%20Na%20+%20Channel%20Slow%20Inactivation&rft.jtitle=Biophysical%20journal&rft.au=Vilin,%20Yuriy%20Y.&rft.date=2001-05-01&rft.volume=80&rft.issue=5&rft.spage=2221&rft.epage=2230&rft.pages=2221-2230&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(01)76195-4&rft_dat=%3Cproquest_pubme%3E73095645%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215715296&rft_id=info:pmid/11325725&rft_els_id=S0006349501761954&rfr_iscdi=true |