A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation

Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa V1.4 channels occurs with a higher probability than hNa V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2001-05, Vol.80 (5), p.2221-2230
Hauptverfasser: Vilin, Yuriy Y., Fujimoto, Esther, Ruben, Peter C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2230
container_issue 5
container_start_page 2221
container_title Biophysical journal
container_volume 80
creator Vilin, Yuriy Y.
Fujimoto, Esther
Ruben, Peter C.
description Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa V1.4 channels occurs with a higher probability than hNa V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa V1.5 and hNa V1.4 channels into chimerical constructs expressed in Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa V1.4 with isoleucine from the corresponding position (891) in hNa V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa V1.4 and I891in hNa V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa V1.4 and hNa V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [ τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.
doi_str_mv 10.1016/S0006-3495(01)76195-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349501761954</els_id><sourcerecordid>73095645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi0EokvhEUAWJ1AVmHHseHMpqhZKKxWQWDhbjj3pumSdYidb8fbNdlelnDj54M_f_J6fsZcI7xCwer8EgKooZa3eAL7VFdaqkI_YDJUUBcC8esxm98gBe5bzFQAKBfiUHSCWQmmhZmx1wpchXnbEv1MOfiT-MbQtJYpDsANl3tBwQxT52bi2kS9s8sE6bqPny1_U0WA7_mXMbhJ8tfyIL1Y2Rur4sutv-Hm0bggbO4Q-PmdPWttlerE_D9nP008_FmfFxbfP54uTi8LJGoaiBE1eKCsRqalqFG7egK9KAX6K5awmh61SDbSkXaU0-FJijZr0XDtZUnnIjnfe67FZk3fTR5LtzHUKa5v-mN4G8-9NDCtz2W8MloAS5SR4vRek_vdIeTBX_ZjilNkIVBqVqKsJUjvIpT7nRO39AASz7cfc9WO2yzeA5q4fs5W_epju76t9IRPwYQfQtKNNoGSyCxQd-ZDIDcb34T8jbgGoGqBR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215715296</pqid></control><display><type>article</type><title>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>PubMed Central</source><creator>Vilin, Yuriy Y. ; Fujimoto, Esther ; Ruben, Peter C.</creator><creatorcontrib>Vilin, Yuriy Y. ; Fujimoto, Esther ; Ruben, Peter C.</creatorcontrib><description>Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa V1.4 channels occurs with a higher probability than hNa V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa V1.5 and hNa V1.4 channels into chimerical constructs expressed in Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa V1.4 with isoleucine from the corresponding position (891) in hNa V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa V1.4 and I891in hNa V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa V1.4 and hNa V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [ τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(01)76195-4</identifier><identifier>PMID: 11325725</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Electrophysiology ; Heart ; Humans ; Isoleucine - chemistry ; Kinetics ; Models, Biological ; Molecular biology ; Molecular Sequence Data ; Muscle, Skeletal - metabolism ; Muscular system ; Mutagenesis, Site-Directed ; Mutation ; Myocardium - metabolism ; Oocytes - metabolism ; Protein Isoforms ; Protein Structure, Tertiary ; Sodium ; Sodium Channels - chemistry ; Sodium Channels - genetics ; Valine - chemistry ; Xenopus</subject><ispartof>Biophysical journal, 2001-05, Vol.80 (5), p.2221-2230</ispartof><rights>2001 The Biophysical Society</rights><rights>Copyright Biophysical Society May 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</citedby><cites>FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301414/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(01)76195-4$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11325725$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vilin, Yuriy Y.</creatorcontrib><creatorcontrib>Fujimoto, Esther</creatorcontrib><creatorcontrib>Ruben, Peter C.</creatorcontrib><title>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa V1.4 channels occurs with a higher probability than hNa V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa V1.5 and hNa V1.4 channels into chimerical constructs expressed in Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa V1.4 with isoleucine from the corresponding position (891) in hNa V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa V1.4 and I891in hNa V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa V1.4 and hNa V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [ τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Electrophysiology</subject><subject>Heart</subject><subject>Humans</subject><subject>Isoleucine - chemistry</subject><subject>Kinetics</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscular system</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Myocardium - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Protein Isoforms</subject><subject>Protein Structure, Tertiary</subject><subject>Sodium</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - genetics</subject><subject>Valine - chemistry</subject><subject>Xenopus</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkcFu1DAQhi0EokvhEUAWJ1AVmHHseHMpqhZKKxWQWDhbjj3pumSdYidb8fbNdlelnDj54M_f_J6fsZcI7xCwer8EgKooZa3eAL7VFdaqkI_YDJUUBcC8esxm98gBe5bzFQAKBfiUHSCWQmmhZmx1wpchXnbEv1MOfiT-MbQtJYpDsANl3tBwQxT52bi2kS9s8sE6bqPny1_U0WA7_mXMbhJ8tfyIL1Y2Rur4sutv-Hm0bggbO4Q-PmdPWttlerE_D9nP008_FmfFxbfP54uTi8LJGoaiBE1eKCsRqalqFG7egK9KAX6K5awmh61SDbSkXaU0-FJijZr0XDtZUnnIjnfe67FZk3fTR5LtzHUKa5v-mN4G8-9NDCtz2W8MloAS5SR4vRek_vdIeTBX_ZjilNkIVBqVqKsJUjvIpT7nRO39AASz7cfc9WO2yzeA5q4fs5W_epju76t9IRPwYQfQtKNNoGSyCxQd-ZDIDcb34T8jbgGoGqBR</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Vilin, Yuriy Y.</creator><creator>Fujimoto, Esther</creator><creator>Ruben, Peter C.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>5PM</scope></search><sort><creationdate>20010501</creationdate><title>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</title><author>Vilin, Yuriy Y. ; Fujimoto, Esther ; Ruben, Peter C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-307ed25a411eb6912c8b0d6320dffeca7ec1f55b0fe7c6570d341917e787c43e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Electrophysiology</topic><topic>Heart</topic><topic>Humans</topic><topic>Isoleucine - chemistry</topic><topic>Kinetics</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscular system</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Myocardium - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Protein Isoforms</topic><topic>Protein Structure, Tertiary</topic><topic>Sodium</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - genetics</topic><topic>Valine - chemistry</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vilin, Yuriy Y.</creatorcontrib><creatorcontrib>Fujimoto, Esther</creatorcontrib><creatorcontrib>Ruben, Peter C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vilin, Yuriy Y.</au><au>Fujimoto, Esther</au><au>Ruben, Peter C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>80</volume><issue>5</issue><spage>2221</spage><epage>2230</epage><pages>2221-2230</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Slow inactivation determines the availability of voltage-gated sodium channels during prolonged depolarization. Slow inactivation in hNa V1.4 channels occurs with a higher probability than hNa V1.5 sodium channels; however, the precise molecular mechanism for this difference remains unclear. Using the macropatch technique we show that the DII S5-S6 p-region uniquely confers the probability of slow inactivation from parental hNa V1.5 and hNa V1.4 channels into chimerical constructs expressed in Xenopus oocytes. Site-directed mutagenesis was used to test whether a specific region within DII S5-S6 controls the probability of slow inactivation. We found that substituting V754 in hNa V1.4 with isoleucine from the corresponding position (891) in hNa V1.5 produced steady-state slow inactivation statistically indistinguishable from that in wild-type hNa V1.5 channels, whereas other mutations have little or no effect on slow inactivation. This result indicates that residues V754 in hNa V1.4 and I891in hNa V1.5 are unique in determining the probability of slow inactivation characteristic of these isoforms. Exchanging S5-S6 linkers between hNa V1.4 and hNa V1.5 channels had no consistent effect on the voltage-dependent slow time inactivation constants [ τ(V)]. This suggests that the molecular structures regulating rates of entry into and exit from the slow inactivated state are different from those controlling the steady-state probability and reside outside the p-regions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>11325725</pmid><doi>10.1016/S0006-3495(01)76195-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2001-05, Vol.80 (5), p.2221-2230
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301414
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); PubMed Central
subjects Amino Acid Sequence
Animals
Electrophysiology
Heart
Humans
Isoleucine - chemistry
Kinetics
Models, Biological
Molecular biology
Molecular Sequence Data
Muscle, Skeletal - metabolism
Muscular system
Mutagenesis, Site-Directed
Mutation
Myocardium - metabolism
Oocytes - metabolism
Protein Isoforms
Protein Structure, Tertiary
Sodium
Sodium Channels - chemistry
Sodium Channels - genetics
Valine - chemistry
Xenopus
title A Single Residue Differentiates between Human Cardiac and Skeletal Muscle Na + Channel Slow Inactivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A51%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Single%20Residue%20Differentiates%20between%20Human%20Cardiac%20and%20Skeletal%20Muscle%20Na%20+%20Channel%20Slow%20Inactivation&rft.jtitle=Biophysical%20journal&rft.au=Vilin,%20Yuriy%20Y.&rft.date=2001-05-01&rft.volume=80&rft.issue=5&rft.spage=2221&rft.epage=2230&rft.pages=2221-2230&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(01)76195-4&rft_dat=%3Cproquest_pubme%3E73095645%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215715296&rft_id=info:pmid/11325725&rft_els_id=S0006349501761954&rfr_iscdi=true