Shear-Induced Assembly of λ-Phage DNA

Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of λ-phage DNA molecules: increasing shear rates form integral DNA multimers of inc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2000-09, Vol.79 (3), p.1530-1536
Hauptverfasser: Haber, Charbel, Wirtz, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1536
container_issue 3
container_start_page 1530
container_title Biophysical journal
container_volume 79
creator Haber, Charbel
Wirtz, Denis
description Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of λ-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted λ-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing the probability of contact between molecules and by stretching the molecules, which exposes the cohesive ends of the otherwise undeformed λ-phage DNA molecules. We apply this principle to enhance the kinetics and extent of DNA concatenation in the presence of ligase. This novel approach to controlled DNA assembly could form the basis for improved approaches to gene-chip and recombinant DNA technologies and provide new insight into the rheology of associating polymers.
doi_str_mv 10.1016/S0006-3495(00)76404-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349500764046</els_id><sourcerecordid>18765284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-691a5bef71774136bfd49d88f1c4f3b6e95c50ccb4327af9685eb2759cb389703</originalsourceid><addsrcrecordid>eNqFkc1O4zAQxy0EglJ4BFDFAS2HLDOOP-ILq4pvCe2uBHu2HGdCg9Kk2A0Sz8Y78EyktEIsF04-zG_-npkfY3sIPxFQHd8CgEpSYeQPgCOtBIhErbEBSsETgEyts8EHssW2Y3wAQC4BN9kWglEGUAzY4e2EXEium6LzVIzGMdI0r59HbTl6fUn-Ttw9jc5-j3fYRunqSLurd8j-XZzfnV4lN38ur0_HN4mXHOeJMuhkTqVGrQWmKi8LYYosK9GLMs0VGekleJ-LlGtXGpVJyrmWxudpZjSkQ3ayzJ11-ZQKT808uNrOQjV14dm2rrL_V5pqYu_bJ4spIAjVBxyuAkL72FGc22kVPdW1a6jtotWcp0JL_BbETCvJM9GDB1_Ah7YLTX8Fy1FqjhpkD8kl5EMbY6DyY2QEu_Bl333ZhQwLYN992cW4-5_3_dS1FNQDv5YA9Vd_qijY6CtqeldVID-3RVt988UbGvCi6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215721705</pqid></control><display><type>article</type><title>Shear-Induced Assembly of λ-Phage DNA</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Haber, Charbel ; Wirtz, Denis</creator><creatorcontrib>Haber, Charbel ; Wirtz, Denis</creatorcontrib><description>Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of λ-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted λ-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing the probability of contact between molecules and by stretching the molecules, which exposes the cohesive ends of the otherwise undeformed λ-phage DNA molecules. We apply this principle to enhance the kinetics and extent of DNA concatenation in the presence of ligase. This novel approach to controlled DNA assembly could form the basis for improved approaches to gene-chip and recombinant DNA technologies and provide new insight into the rheology of associating polymers.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(00)76404-6</identifier><identifier>PMID: 10969014</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Anatomy &amp; physiology ; Bacteriophage lambda - genetics ; Calcium - pharmacology ; Cations, Divalent - pharmacology ; Deoxyribonucleic acid ; DNA ; DNA Ligases - metabolism ; DNA, Viral - chemistry ; DNA, Viral - drug effects ; DNA, Viral - metabolism ; Magnesium - pharmacology ; Models, Molecular ; Molecules ; Nucleic Acid Conformation ; Stress, Mechanical</subject><ispartof>Biophysical journal, 2000-09, Vol.79 (3), p.1530-1536</ispartof><rights>2000 The Biophysical Society</rights><rights>Copyright Biophysical Society Sep 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-691a5bef71774136bfd49d88f1c4f3b6e95c50ccb4327af9685eb2759cb389703</citedby><cites>FETCH-LOGICAL-c521t-691a5bef71774136bfd49d88f1c4f3b6e95c50ccb4327af9685eb2759cb389703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301046/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(00)76404-6$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27903,27904,45974,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10969014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haber, Charbel</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><title>Shear-Induced Assembly of λ-Phage DNA</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of λ-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted λ-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing the probability of contact between molecules and by stretching the molecules, which exposes the cohesive ends of the otherwise undeformed λ-phage DNA molecules. We apply this principle to enhance the kinetics and extent of DNA concatenation in the presence of ligase. This novel approach to controlled DNA assembly could form the basis for improved approaches to gene-chip and recombinant DNA technologies and provide new insight into the rheology of associating polymers.</description><subject>Anatomy &amp; physiology</subject><subject>Bacteriophage lambda - genetics</subject><subject>Calcium - pharmacology</subject><subject>Cations, Divalent - pharmacology</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Ligases - metabolism</subject><subject>DNA, Viral - chemistry</subject><subject>DNA, Viral - drug effects</subject><subject>DNA, Viral - metabolism</subject><subject>Magnesium - pharmacology</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Stress, Mechanical</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1O4zAQxy0EglJ4BFDFAS2HLDOOP-ILq4pvCe2uBHu2HGdCg9Kk2A0Sz8Y78EyktEIsF04-zG_-npkfY3sIPxFQHd8CgEpSYeQPgCOtBIhErbEBSsETgEyts8EHssW2Y3wAQC4BN9kWglEGUAzY4e2EXEium6LzVIzGMdI0r59HbTl6fUn-Ttw9jc5-j3fYRunqSLurd8j-XZzfnV4lN38ur0_HN4mXHOeJMuhkTqVGrQWmKi8LYYosK9GLMs0VGekleJ-LlGtXGpVJyrmWxudpZjSkQ3ayzJ11-ZQKT808uNrOQjV14dm2rrL_V5pqYu_bJ4spIAjVBxyuAkL72FGc22kVPdW1a6jtotWcp0JL_BbETCvJM9GDB1_Ah7YLTX8Fy1FqjhpkD8kl5EMbY6DyY2QEu_Bl333ZhQwLYN992cW4-5_3_dS1FNQDv5YA9Vd_qijY6CtqeldVID-3RVt988UbGvCi6w</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Haber, Charbel</creator><creator>Wirtz, Denis</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000901</creationdate><title>Shear-Induced Assembly of λ-Phage DNA</title><author>Haber, Charbel ; Wirtz, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-691a5bef71774136bfd49d88f1c4f3b6e95c50ccb4327af9685eb2759cb389703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Anatomy &amp; physiology</topic><topic>Bacteriophage lambda - genetics</topic><topic>Calcium - pharmacology</topic><topic>Cations, Divalent - pharmacology</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Ligases - metabolism</topic><topic>DNA, Viral - chemistry</topic><topic>DNA, Viral - drug effects</topic><topic>DNA, Viral - metabolism</topic><topic>Magnesium - pharmacology</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haber, Charbel</creatorcontrib><creatorcontrib>Wirtz, Denis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haber, Charbel</au><au>Wirtz, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear-Induced Assembly of λ-Phage DNA</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>79</volume><issue>3</issue><spage>1530</spage><epage>1536</epage><pages>1530-1536</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Recombinant DNA technology, which is based on the assembly of DNA fragments, forms the backbone of biological and biomedical research. Here we demonstrate that a uniform shear flow can induce and control the assembly of λ-phage DNA molecules: increasing shear rates form integral DNA multimers of increasing molecular weight. Spontaneous assembly and grouping of end-blunted λ-phage DNA molecules are negligible. It is suggested that shear-induced DNA assembly is caused by increasing the probability of contact between molecules and by stretching the molecules, which exposes the cohesive ends of the otherwise undeformed λ-phage DNA molecules. We apply this principle to enhance the kinetics and extent of DNA concatenation in the presence of ligase. This novel approach to controlled DNA assembly could form the basis for improved approaches to gene-chip and recombinant DNA technologies and provide new insight into the rheology of associating polymers.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10969014</pmid><doi>10.1016/S0006-3495(00)76404-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2000-09, Vol.79 (3), p.1530-1536
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301046
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anatomy & physiology
Bacteriophage lambda - genetics
Calcium - pharmacology
Cations, Divalent - pharmacology
Deoxyribonucleic acid
DNA
DNA Ligases - metabolism
DNA, Viral - chemistry
DNA, Viral - drug effects
DNA, Viral - metabolism
Magnesium - pharmacology
Models, Molecular
Molecules
Nucleic Acid Conformation
Stress, Mechanical
title Shear-Induced Assembly of λ-Phage DNA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear-Induced%20Assembly%20of%20%CE%BB-Phage%20DNA&rft.jtitle=Biophysical%20journal&rft.au=Haber,%20Charbel&rft.date=2000-09-01&rft.volume=79&rft.issue=3&rft.spage=1530&rft.epage=1536&rft.pages=1530-1536&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(00)76404-6&rft_dat=%3Cproquest_pubme%3E18765284%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215721705&rft_id=info:pmid/10969014&rft_els_id=S0006349500764046&rfr_iscdi=true