Variable Velocity Liquid Flow EPR Applied to Submillisecond Protein Folding

We have developed a variable velocity, rapid-mix, continuous-flow method for observing and delineating kinetics by dielectric resonator-based electron paramagnetic resonance (EPR). The technology opens a new facet for kinetic study of radicals in liquid at submillisecond time resolution. The EPR sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2000-05, Vol.78 (5), p.2702-2708
Hauptverfasser: Grigoryants, Vladimir M., Veselov, Andrei V., Scholes, Charles P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2708
container_issue 5
container_start_page 2702
container_title Biophysical journal
container_volume 78
creator Grigoryants, Vladimir M.
Veselov, Andrei V.
Scholes, Charles P.
description We have developed a variable velocity, rapid-mix, continuous-flow method for observing and delineating kinetics by dielectric resonator-based electron paramagnetic resonance (EPR). The technology opens a new facet for kinetic study of radicals in liquid at submillisecond time resolution. The EPR system (after Sienkiewicz, A., K. Qu, and C. P. Scholes. 1994. Rev. Sci. Instrum. 65:68–74) accommodated a miniature quartz capillary mixer with an ≈0.5 μL delivery volume to the midpoint of the EPR-active zone. The flow velocity was varied in a preprogrammed manner, giving a minimum delivery time of ≈150 μs. The mixing was efficient, and we constructed kinetics in the 0.15–2.1-ms time range by plotting the continuous wave EPR signal taken during flow versus the reciprocal of flow velocity. We followed the refolding kinetics of iso-1-cytochrome c spin-labeled at Cysteine 102. At 20°C, upon dilution of guanidinium hydrochloride denaturant, a fast phase of refolding was resolved with an exponential time constant of 0.12 ms, which was consistent with the “burst” phase observed by optically detected flow techniques. At 7°C the kinetic refolding time of this phase increased to 0.5 ms.
doi_str_mv 10.1016/S0006-3495(00)76814-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349500768147</els_id><sourcerecordid>53574617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-6d3b815bb52e9b8899637bf0c18e8232d8eb7092a0b448a4307439529eba94e63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhJ4AiDggOgbETf12KqqoLiJWoKPRq2c5sceWNt3ZS1H-P262qwgVffPAzr2fmIeQlhfcUqPhwCgCi7XrN3wK8k0LRvpWPyILynrUASjwmi3tkjzwr5QKAMg70KdmjIOsRYkG-ntkcrIvYnGFMPkzXzSpczmFoljH9bo5PvjeH220MODRTak5ntwkxhoI-jUNzktOEYWyWKQ5hPH9OnqxtLPji7t4nP5fHP44-t6tvn74cHa5a32uYWjF0TlHuHGeonVJai066NXiqULGODQqdBM0suL5Xtu9A9p3mTKOzukfR7ZODXe62toODx3HKNpptDhubr02ywfz9MoZf5jxdGdrVxXBdA97cBeR0OWOZzCYUjzHaEdNcjKSgpdJdBV__A16kOY91OMMol4wy4BXiO8jnVErG9X0nFMyNK3PrytyIMADm1pWRte7VwzEeVO3kVODjDsC6zKuA2RQfcPQ4hIx-MkMK__niD18Covk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215721205</pqid></control><display><type>article</type><title>Variable Velocity Liquid Flow EPR Applied to Submillisecond Protein Folding</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Grigoryants, Vladimir M. ; Veselov, Andrei V. ; Scholes, Charles P.</creator><creatorcontrib>Grigoryants, Vladimir M. ; Veselov, Andrei V. ; Scholes, Charles P.</creatorcontrib><description>We have developed a variable velocity, rapid-mix, continuous-flow method for observing and delineating kinetics by dielectric resonator-based electron paramagnetic resonance (EPR). The technology opens a new facet for kinetic study of radicals in liquid at submillisecond time resolution. The EPR system (after Sienkiewicz, A., K. Qu, and C. P. Scholes. 1994. Rev. Sci. Instrum. 65:68–74) accommodated a miniature quartz capillary mixer with an ≈0.5 μL delivery volume to the midpoint of the EPR-active zone. The flow velocity was varied in a preprogrammed manner, giving a minimum delivery time of ≈150 μs. The mixing was efficient, and we constructed kinetics in the 0.15–2.1-ms time range by plotting the continuous wave EPR signal taken during flow versus the reciprocal of flow velocity. We followed the refolding kinetics of iso-1-cytochrome c spin-labeled at Cysteine 102. At 20°C, upon dilution of guanidinium hydrochloride denaturant, a fast phase of refolding was resolved with an exponential time constant of 0.12 ms, which was consistent with the “burst” phase observed by optically detected flow techniques. At 7°C the kinetic refolding time of this phase increased to 0.5 ms.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(00)76814-7</identifier><identifier>PMID: 10777766</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biochemistry ; Biophysical Phenomena ; Biophysics ; Cyclic N-Oxides ; Cysteine - chemistry ; Cytochrome c Group - chemistry ; Cytochromes c ; Electron Spin Resonance Spectroscopy - instrumentation ; Electron Spin Resonance Spectroscopy - methods ; Kinetics ; Mesylates ; Protein Folding ; Proteins ; Proteins - chemistry ; Saccharomyces cerevisiae Proteins ; Spin Labels</subject><ispartof>Biophysical journal, 2000-05, Vol.78 (5), p.2702-2708</ispartof><rights>2000 The Biophysical Society</rights><rights>Copyright Biophysical Society May 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-6d3b815bb52e9b8899637bf0c18e8232d8eb7092a0b448a4307439529eba94e63</citedby><cites>FETCH-LOGICAL-c490t-6d3b815bb52e9b8899637bf0c18e8232d8eb7092a0b448a4307439529eba94e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300859/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(00)76814-7$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27923,27924,45994,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10777766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grigoryants, Vladimir M.</creatorcontrib><creatorcontrib>Veselov, Andrei V.</creatorcontrib><creatorcontrib>Scholes, Charles P.</creatorcontrib><title>Variable Velocity Liquid Flow EPR Applied to Submillisecond Protein Folding</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We have developed a variable velocity, rapid-mix, continuous-flow method for observing and delineating kinetics by dielectric resonator-based electron paramagnetic resonance (EPR). The technology opens a new facet for kinetic study of radicals in liquid at submillisecond time resolution. The EPR system (after Sienkiewicz, A., K. Qu, and C. P. Scholes. 1994. Rev. Sci. Instrum. 65:68–74) accommodated a miniature quartz capillary mixer with an ≈0.5 μL delivery volume to the midpoint of the EPR-active zone. The flow velocity was varied in a preprogrammed manner, giving a minimum delivery time of ≈150 μs. The mixing was efficient, and we constructed kinetics in the 0.15–2.1-ms time range by plotting the continuous wave EPR signal taken during flow versus the reciprocal of flow velocity. We followed the refolding kinetics of iso-1-cytochrome c spin-labeled at Cysteine 102. At 20°C, upon dilution of guanidinium hydrochloride denaturant, a fast phase of refolding was resolved with an exponential time constant of 0.12 ms, which was consistent with the “burst” phase observed by optically detected flow techniques. At 7°C the kinetic refolding time of this phase increased to 0.5 ms.</description><subject>Biochemistry</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cyclic N-Oxides</subject><subject>Cysteine - chemistry</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochromes c</subject><subject>Electron Spin Resonance Spectroscopy - instrumentation</subject><subject>Electron Spin Resonance Spectroscopy - methods</subject><subject>Kinetics</subject><subject>Mesylates</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Spin Labels</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkU1v1DAQhi0EokvhJ4AiDggOgbETf12KqqoLiJWoKPRq2c5sceWNt3ZS1H-P262qwgVffPAzr2fmIeQlhfcUqPhwCgCi7XrN3wK8k0LRvpWPyILynrUASjwmi3tkjzwr5QKAMg70KdmjIOsRYkG-ntkcrIvYnGFMPkzXzSpczmFoljH9bo5PvjeH220MODRTak5ntwkxhoI-jUNzktOEYWyWKQ5hPH9OnqxtLPji7t4nP5fHP44-t6tvn74cHa5a32uYWjF0TlHuHGeonVJai066NXiqULGODQqdBM0suL5Xtu9A9p3mTKOzukfR7ZODXe62toODx3HKNpptDhubr02ywfz9MoZf5jxdGdrVxXBdA97cBeR0OWOZzCYUjzHaEdNcjKSgpdJdBV__A16kOY91OMMol4wy4BXiO8jnVErG9X0nFMyNK3PrytyIMADm1pWRte7VwzEeVO3kVODjDsC6zKuA2RQfcPQ4hIx-MkMK__niD18Covk</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Grigoryants, Vladimir M.</creator><creator>Veselov, Andrei V.</creator><creator>Scholes, Charles P.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000501</creationdate><title>Variable Velocity Liquid Flow EPR Applied to Submillisecond Protein Folding</title><author>Grigoryants, Vladimir M. ; Veselov, Andrei V. ; Scholes, Charles P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-6d3b815bb52e9b8899637bf0c18e8232d8eb7092a0b448a4307439529eba94e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Biochemistry</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cyclic N-Oxides</topic><topic>Cysteine - chemistry</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochromes c</topic><topic>Electron Spin Resonance Spectroscopy - instrumentation</topic><topic>Electron Spin Resonance Spectroscopy - methods</topic><topic>Kinetics</topic><topic>Mesylates</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Spin Labels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grigoryants, Vladimir M.</creatorcontrib><creatorcontrib>Veselov, Andrei V.</creatorcontrib><creatorcontrib>Scholes, Charles P.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grigoryants, Vladimir M.</au><au>Veselov, Andrei V.</au><au>Scholes, Charles P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Velocity Liquid Flow EPR Applied to Submillisecond Protein Folding</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>78</volume><issue>5</issue><spage>2702</spage><epage>2708</epage><pages>2702-2708</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We have developed a variable velocity, rapid-mix, continuous-flow method for observing and delineating kinetics by dielectric resonator-based electron paramagnetic resonance (EPR). The technology opens a new facet for kinetic study of radicals in liquid at submillisecond time resolution. The EPR system (after Sienkiewicz, A., K. Qu, and C. P. Scholes. 1994. Rev. Sci. Instrum. 65:68–74) accommodated a miniature quartz capillary mixer with an ≈0.5 μL delivery volume to the midpoint of the EPR-active zone. The flow velocity was varied in a preprogrammed manner, giving a minimum delivery time of ≈150 μs. The mixing was efficient, and we constructed kinetics in the 0.15–2.1-ms time range by plotting the continuous wave EPR signal taken during flow versus the reciprocal of flow velocity. We followed the refolding kinetics of iso-1-cytochrome c spin-labeled at Cysteine 102. At 20°C, upon dilution of guanidinium hydrochloride denaturant, a fast phase of refolding was resolved with an exponential time constant of 0.12 ms, which was consistent with the “burst” phase observed by optically detected flow techniques. At 7°C the kinetic refolding time of this phase increased to 0.5 ms.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10777766</pmid><doi>10.1016/S0006-3495(00)76814-7</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2000-05, Vol.78 (5), p.2702-2708
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300859
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biochemistry
Biophysical Phenomena
Biophysics
Cyclic N-Oxides
Cysteine - chemistry
Cytochrome c Group - chemistry
Cytochromes c
Electron Spin Resonance Spectroscopy - instrumentation
Electron Spin Resonance Spectroscopy - methods
Kinetics
Mesylates
Protein Folding
Proteins
Proteins - chemistry
Saccharomyces cerevisiae Proteins
Spin Labels
title Variable Velocity Liquid Flow EPR Applied to Submillisecond Protein Folding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Velocity%20Liquid%20Flow%20EPR%20Applied%20to%20Submillisecond%20Protein%20Folding&rft.jtitle=Biophysical%20journal&rft.au=Grigoryants,%20Vladimir%20M.&rft.date=2000-05-01&rft.volume=78&rft.issue=5&rft.spage=2702&rft.epage=2708&rft.pages=2702-2708&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(00)76814-7&rft_dat=%3Cproquest_pubme%3E53574617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215721205&rft_id=info:pmid/10777766&rft_els_id=S0006349500768147&rfr_iscdi=true