Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment

The Stokes–Einstein–Debye equation is currently used to obtain information on protein size or on local viscosity from the measurement of the rotational correlation time. However, the implicit assumptions of a continuous and homogeneous solvent do not hold either in vivo, because of the high density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1999-05, Vol.76 (5), p.2744-2751
Hauptverfasser: Lavalette, Daniel, Tétreau, Catherine, Tourbez, Martine, Blouquit, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2751
container_issue 5
container_start_page 2744
container_title Biophysical journal
container_volume 76
creator Lavalette, Daniel
Tétreau, Catherine
Tourbez, Martine
Blouquit, Yves
description The Stokes–Einstein–Debye equation is currently used to obtain information on protein size or on local viscosity from the measurement of the rotational correlation time. However, the implicit assumptions of a continuous and homogeneous solvent do not hold either in vivo, because of the high density of macromolecules, or in vitro, where viscosity is adjusted by adding viscous cosolvents of various size. To quantify the consequence of nonhomogeneity, we have measured the rotational Brownian motion of three globular proteins with molecular mass from 66 to 4000 kD in presence of 1.5 to 2000 kD dextrans as viscous cosolvents. Our results indicate that the linear viscosity dependence of the Stokes–Einstein relation must be replaced by a power law to describe the rotational Brownian motion of proteins in a macromolecular environment. The exponent of the power law expresses the fact that the protein experiences only a fraction of the hydrodynamic interactions of macromolecular cosolvents. An explicit expression of the exponent in terms of protein size and cosolvent's mass is obtained, permitting definition of a microscopic viscosity. Experimental data suggest that a similar effective microviscosity should be introduced in Kramers’ equation describing protein reaction rates.
doi_str_mv 10.1016/S0006-3495(99)77427-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349599774278</els_id><sourcerecordid>41335862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c608t-bb9d71c5dd309ea9684ccefdee6531cbdcbf52ea31f8b8cd976a4b254f67a2d53</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCTwBZLCpYpPgRO_EGhNoClVqBeC3YWI59Da4Se2onI_Xf4-lUVWHDylfyd-7jHISeUXJECZWvvxJCZMNbJV4q9arrWtY1_QO0oqJlDSG9fIhWd8ge2i_lkhDKBKGP0R4ljHPSqxX6eRFsTsWmdbD4R6hFCfM1NtHhL2k2c0jRjPgkeL-UWuPk8eecZgix4BCxwRem6qc0gl1Gk_Fp3ISc4gRxfoIeeTMWeHr7HqDv70-_HX9szj99ODt-d95YSfq5GQblOmqFc5woMEr2rbXgHYAUnNrB2cELBoZT3w-9daqTph2YaL3sDHOCH6A3u77rZZjA2To6m1Gvc5hMvtbJBP33Twy_9a-00ZQTwtq2Nji8bZDT1QJl1lM1AsbRREhL0VJ1vE7dgi_-AS_TkqtBRTMqOtbX3SskdtDW15LB321Cid5Gp2-i09tctFL6JjrdV93z-2fcU-2yqsDbHQDVzE2ArIsNEC24kMHO2qXwnxF_AM4irBY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215728684</pqid></control><display><type>article</type><title>Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment</title><source>MEDLINE</source><source>Cell Press Archives</source><source>Elsevier ScienceDirect Journals Complete</source><source>PubMed</source><source>EZB Electronic Journals Library</source><creator>Lavalette, Daniel ; Tétreau, Catherine ; Tourbez, Martine ; Blouquit, Yves</creator><creatorcontrib>Lavalette, Daniel ; Tétreau, Catherine ; Tourbez, Martine ; Blouquit, Yves</creatorcontrib><description>The Stokes–Einstein–Debye equation is currently used to obtain information on protein size or on local viscosity from the measurement of the rotational correlation time. However, the implicit assumptions of a continuous and homogeneous solvent do not hold either in vivo, because of the high density of macromolecules, or in vitro, where viscosity is adjusted by adding viscous cosolvents of various size. To quantify the consequence of nonhomogeneity, we have measured the rotational Brownian motion of three globular proteins with molecular mass from 66 to 4000 kD in presence of 1.5 to 2000 kD dextrans as viscous cosolvents. Our results indicate that the linear viscosity dependence of the Stokes–Einstein relation must be replaced by a power law to describe the rotational Brownian motion of proteins in a macromolecular environment. The exponent of the power law expresses the fact that the protein experiences only a fraction of the hydrodynamic interactions of macromolecular cosolvents. An explicit expression of the exponent in terms of protein size and cosolvent's mass is obtained, permitting definition of a microscopic viscosity. Experimental data suggest that a similar effective microviscosity should be introduced in Kramers’ equation describing protein reaction rates.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(99)77427-8</identifier><identifier>PMID: 10233089</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biophysical Phenomena ; Biophysics ; Cattle ; Cellular biology ; Dextrans - chemistry ; Diffusion ; Glycerol ; Hemoglobins - chemistry ; Macromolecular Substances ; Molecular Weight ; Molecules ; Oligochaeta ; Peptide Fragments - chemistry ; Proteins ; Proteins - chemistry ; Rotation ; Serum Albumin, Bovine - chemistry ; Solvents ; Thermodynamics ; Viscosity ; Water</subject><ispartof>Biophysical journal, 1999-05, Vol.76 (5), p.2744-2751</ispartof><rights>1999 The Biophysical Society</rights><rights>Copyright Biophysical Society May 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c608t-bb9d71c5dd309ea9684ccefdee6531cbdcbf52ea31f8b8cd976a4b254f67a2d53</citedby><cites>FETCH-LOGICAL-c608t-bb9d71c5dd309ea9684ccefdee6531cbdcbf52ea31f8b8cd976a4b254f67a2d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300244/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349599774278$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10233089$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lavalette, Daniel</creatorcontrib><creatorcontrib>Tétreau, Catherine</creatorcontrib><creatorcontrib>Tourbez, Martine</creatorcontrib><creatorcontrib>Blouquit, Yves</creatorcontrib><title>Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The Stokes–Einstein–Debye equation is currently used to obtain information on protein size or on local viscosity from the measurement of the rotational correlation time. However, the implicit assumptions of a continuous and homogeneous solvent do not hold either in vivo, because of the high density of macromolecules, or in vitro, where viscosity is adjusted by adding viscous cosolvents of various size. To quantify the consequence of nonhomogeneity, we have measured the rotational Brownian motion of three globular proteins with molecular mass from 66 to 4000 kD in presence of 1.5 to 2000 kD dextrans as viscous cosolvents. Our results indicate that the linear viscosity dependence of the Stokes–Einstein relation must be replaced by a power law to describe the rotational Brownian motion of proteins in a macromolecular environment. The exponent of the power law expresses the fact that the protein experiences only a fraction of the hydrodynamic interactions of macromolecular cosolvents. An explicit expression of the exponent in terms of protein size and cosolvent's mass is obtained, permitting definition of a microscopic viscosity. Experimental data suggest that a similar effective microviscosity should be introduced in Kramers’ equation describing protein reaction rates.</description><subject>Animals</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cattle</subject><subject>Cellular biology</subject><subject>Dextrans - chemistry</subject><subject>Diffusion</subject><subject>Glycerol</subject><subject>Hemoglobins - chemistry</subject><subject>Macromolecular Substances</subject><subject>Molecular Weight</subject><subject>Molecules</subject><subject>Oligochaeta</subject><subject>Peptide Fragments - chemistry</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>Rotation</subject><subject>Serum Albumin, Bovine - chemistry</subject><subject>Solvents</subject><subject>Thermodynamics</subject><subject>Viscosity</subject><subject>Water</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhS0EotPCTwBZLCpYpPgRO_EGhNoClVqBeC3YWI59Da4Se2onI_Xf4-lUVWHDylfyd-7jHISeUXJECZWvvxJCZMNbJV4q9arrWtY1_QO0oqJlDSG9fIhWd8ge2i_lkhDKBKGP0R4ljHPSqxX6eRFsTsWmdbD4R6hFCfM1NtHhL2k2c0jRjPgkeL-UWuPk8eecZgix4BCxwRem6qc0gl1Gk_Fp3ISc4gRxfoIeeTMWeHr7HqDv70-_HX9szj99ODt-d95YSfq5GQblOmqFc5woMEr2rbXgHYAUnNrB2cELBoZT3w-9daqTph2YaL3sDHOCH6A3u77rZZjA2To6m1Gvc5hMvtbJBP33Twy_9a-00ZQTwtq2Nji8bZDT1QJl1lM1AsbRREhL0VJ1vE7dgi_-AS_TkqtBRTMqOtbX3SskdtDW15LB321Cid5Gp2-i09tctFL6JjrdV93z-2fcU-2yqsDbHQDVzE2ArIsNEC24kMHO2qXwnxF_AM4irBY</recordid><startdate>19990501</startdate><enddate>19990501</enddate><creator>Lavalette, Daniel</creator><creator>Tétreau, Catherine</creator><creator>Tourbez, Martine</creator><creator>Blouquit, Yves</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19990501</creationdate><title>Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment</title><author>Lavalette, Daniel ; Tétreau, Catherine ; Tourbez, Martine ; Blouquit, Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c608t-bb9d71c5dd309ea9684ccefdee6531cbdcbf52ea31f8b8cd976a4b254f67a2d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Animals</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cattle</topic><topic>Cellular biology</topic><topic>Dextrans - chemistry</topic><topic>Diffusion</topic><topic>Glycerol</topic><topic>Hemoglobins - chemistry</topic><topic>Macromolecular Substances</topic><topic>Molecular Weight</topic><topic>Molecules</topic><topic>Oligochaeta</topic><topic>Peptide Fragments - chemistry</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>Rotation</topic><topic>Serum Albumin, Bovine - chemistry</topic><topic>Solvents</topic><topic>Thermodynamics</topic><topic>Viscosity</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lavalette, Daniel</creatorcontrib><creatorcontrib>Tétreau, Catherine</creatorcontrib><creatorcontrib>Tourbez, Martine</creatorcontrib><creatorcontrib>Blouquit, Yves</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lavalette, Daniel</au><au>Tétreau, Catherine</au><au>Tourbez, Martine</au><au>Blouquit, Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1999-05-01</date><risdate>1999</risdate><volume>76</volume><issue>5</issue><spage>2744</spage><epage>2751</epage><pages>2744-2751</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The Stokes–Einstein–Debye equation is currently used to obtain information on protein size or on local viscosity from the measurement of the rotational correlation time. However, the implicit assumptions of a continuous and homogeneous solvent do not hold either in vivo, because of the high density of macromolecules, or in vitro, where viscosity is adjusted by adding viscous cosolvents of various size. To quantify the consequence of nonhomogeneity, we have measured the rotational Brownian motion of three globular proteins with molecular mass from 66 to 4000 kD in presence of 1.5 to 2000 kD dextrans as viscous cosolvents. Our results indicate that the linear viscosity dependence of the Stokes–Einstein relation must be replaced by a power law to describe the rotational Brownian motion of proteins in a macromolecular environment. The exponent of the power law expresses the fact that the protein experiences only a fraction of the hydrodynamic interactions of macromolecular cosolvents. An explicit expression of the exponent in terms of protein size and cosolvent's mass is obtained, permitting definition of a microscopic viscosity. Experimental data suggest that a similar effective microviscosity should be introduced in Kramers’ equation describing protein reaction rates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10233089</pmid><doi>10.1016/S0006-3495(99)77427-8</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1999-05, Vol.76 (5), p.2744-2751
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300244
source MEDLINE; Cell Press Archives; Elsevier ScienceDirect Journals Complete; PubMed; EZB Electronic Journals Library
subjects Animals
Biophysical Phenomena
Biophysics
Cattle
Cellular biology
Dextrans - chemistry
Diffusion
Glycerol
Hemoglobins - chemistry
Macromolecular Substances
Molecular Weight
Molecules
Oligochaeta
Peptide Fragments - chemistry
Proteins
Proteins - chemistry
Rotation
Serum Albumin, Bovine - chemistry
Solvents
Thermodynamics
Viscosity
Water
title Microscopic Viscosity and Rotational Diffusion of Proteins in a Macromolecular Environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T17%3A29%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microscopic%20Viscosity%20and%20Rotational%20Diffusion%20of%20Proteins%20in%20a%20Macromolecular%20Environment&rft.jtitle=Biophysical%20journal&rft.au=Lavalette,%20Daniel&rft.date=1999-05-01&rft.volume=76&rft.issue=5&rft.spage=2744&rft.epage=2751&rft.pages=2744-2751&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(99)77427-8&rft_dat=%3Cproquest_pubme%3E41335862%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215728684&rft_id=info:pmid/10233089&rft_els_id=S0006349599774278&rfr_iscdi=true