Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension

The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular biology of the cell 2002-10, Vol.13 (10), p.3706-3719
Hauptverfasser: Shannon, Katie B, Canman, Julie C, Salmon, E D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3719
container_issue 10
container_start_page 3706
container_title Molecular biology of the cell
container_volume 13
creator Shannon, Katie B
Canman, Julie C
Salmon, E D
description The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.
doi_str_mv 10.1091/mbc.E02-03-0137
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_129977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72618297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhq0KBBQ491b5xC2LP7KOfeiBIloqgZBQe-Bkje0JmzZrp7ED4t83q11BOc1I87zz9RLyibMFZ4afr51fXDFRMVkxLpsP5Igbaap6qdXenLOlqfhS1IfkY86_GeN1rZoDcsiF1LpR-og83EIQFGKgXyd3z2k7RV-6FGkXKdDcxcceqV-h_zOkLhY6QFk9wwstKyh0xDykGDItaYb7lDNNLS0Y89zhhOy30Gc83cVj8uvb1c_L6-rm7vuPy4ubytdKlUobJoWTziFw4xxHEDULwhnPhFfovAPhnW411wFqhYG3EELbGNS1ahuQx-TLtu8wuTUGj7GM0Nth7NYwvtgEnX1fid3KPqYny4UxTTPrz3b6Mf2dMBe77rLHvoeIacq2EYprYTbg-Rb043zpiO3rDM7sxg07u2GRCcuk3bgxKz7_v9obv3u__AfmyokJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72618297</pqid></control><display><type>article</type><title>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shannon, Katie B ; Canman, Julie C ; Salmon, E D</creator><contributor>Stearns, Tim</contributor><creatorcontrib>Shannon, Katie B ; Canman, Julie C ; Salmon, E D ; Stearns, Tim</creatorcontrib><description>The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E02-03-0137</identifier><identifier>PMID: 12388768</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; Antibodies - metabolism ; Antineoplastic Agents, Phytogenic - metabolism ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - metabolism ; Cell Cycle - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line ; Chromosomes - metabolism ; Epitopes - metabolism ; Fluorescence Recovery After Photobleaching ; Fluorescent Dyes - metabolism ; Genes, cdc ; HeLa Cells ; Humans ; Kinetochores - metabolism ; Mad2 Proteins ; Microinjections ; Microtubules - metabolism ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein-Serine-Threonine Kinases ; Recombinant Fusion Proteins - metabolism ; Repressor Proteins ; Spindle Apparatus - metabolism ; Stress, Mechanical ; Temperature ; Vinblastine - metabolism</subject><ispartof>Molecular biology of the cell, 2002-10, Vol.13 (10), p.3706-3719</ispartof><rights>Copyright © 2002, The American Society for Cell Biology 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</citedby><cites>FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC129977/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC129977/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12388768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stearns, Tim</contributor><creatorcontrib>Shannon, Katie B</creatorcontrib><creatorcontrib>Canman, Julie C</creatorcontrib><creatorcontrib>Salmon, E D</creatorcontrib><title>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.</description><subject>Animals</subject><subject>Antibodies - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - metabolism</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cell Cycle - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>Chromosomes - metabolism</subject><subject>Epitopes - metabolism</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Genes, cdc</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetochores - metabolism</subject><subject>Mad2 Proteins</subject><subject>Microinjections</subject><subject>Microtubules - metabolism</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Repressor Proteins</subject><subject>Spindle Apparatus - metabolism</subject><subject>Stress, Mechanical</subject><subject>Temperature</subject><subject>Vinblastine - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1P3DAQhq0KBBQ491b5xC2LP7KOfeiBIloqgZBQe-Bkje0JmzZrp7ED4t83q11BOc1I87zz9RLyibMFZ4afr51fXDFRMVkxLpsP5Igbaap6qdXenLOlqfhS1IfkY86_GeN1rZoDcsiF1LpR-og83EIQFGKgXyd3z2k7RV-6FGkXKdDcxcceqV-h_zOkLhY6QFk9wwstKyh0xDykGDItaYb7lDNNLS0Y89zhhOy30Gc83cVj8uvb1c_L6-rm7vuPy4ubytdKlUobJoWTziFw4xxHEDULwhnPhFfovAPhnW411wFqhYG3EELbGNS1ahuQx-TLtu8wuTUGj7GM0Nth7NYwvtgEnX1fid3KPqYny4UxTTPrz3b6Mf2dMBe77rLHvoeIacq2EYprYTbg-Rb043zpiO3rDM7sxg07u2GRCcuk3bgxKz7_v9obv3u__AfmyokJ</recordid><startdate>200210</startdate><enddate>200210</enddate><creator>Shannon, Katie B</creator><creator>Canman, Julie C</creator><creator>Salmon, E D</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200210</creationdate><title>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</title><author>Shannon, Katie B ; Canman, Julie C ; Salmon, E D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Antibodies - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - metabolism</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cell Cycle - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>Chromosomes - metabolism</topic><topic>Epitopes - metabolism</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Genes, cdc</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetochores - metabolism</topic><topic>Mad2 Proteins</topic><topic>Microinjections</topic><topic>Microtubules - metabolism</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Repressor Proteins</topic><topic>Spindle Apparatus - metabolism</topic><topic>Stress, Mechanical</topic><topic>Temperature</topic><topic>Vinblastine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shannon, Katie B</creatorcontrib><creatorcontrib>Canman, Julie C</creatorcontrib><creatorcontrib>Salmon, E D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shannon, Katie B</au><au>Canman, Julie C</au><au>Salmon, E D</au><au>Stearns, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2002-10</date><risdate>2002</risdate><volume>13</volume><issue>10</issue><spage>3706</spage><epage>3719</epage><pages>3706-3719</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>12388768</pmid><doi>10.1091/mbc.E02-03-0137</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-1524
ispartof Molecular biology of the cell, 2002-10, Vol.13 (10), p.3706-3719
issn 1059-1524
1939-4586
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_129977
source MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Antibodies - metabolism
Antineoplastic Agents, Phytogenic - metabolism
Calcium-Binding Proteins - genetics
Calcium-Binding Proteins - metabolism
Cell Cycle - physiology
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
Cell Line
Chromosomes - metabolism
Epitopes - metabolism
Fluorescence Recovery After Photobleaching
Fluorescent Dyes - metabolism
Genes, cdc
HeLa Cells
Humans
Kinetochores - metabolism
Mad2 Proteins
Microinjections
Microtubules - metabolism
Protein Kinases - genetics
Protein Kinases - metabolism
Protein-Serine-Threonine Kinases
Recombinant Fusion Proteins - metabolism
Repressor Proteins
Spindle Apparatus - metabolism
Stress, Mechanical
Temperature
Vinblastine - metabolism
title Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mad2%20and%20BubR1%20function%20in%20a%20single%20checkpoint%20pathway%20that%20responds%20to%20a%20loss%20of%20tension&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Shannon,%20Katie%20B&rft.date=2002-10&rft.volume=13&rft.issue=10&rft.spage=3706&rft.epage=3719&rft.pages=3706-3719&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E02-03-0137&rft_dat=%3Cproquest_pubme%3E72618297%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72618297&rft_id=info:pmid/12388768&rfr_iscdi=true