Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension
The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23...
Gespeichert in:
Veröffentlicht in: | Molecular biology of the cell 2002-10, Vol.13 (10), p.3706-3719 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3719 |
---|---|
container_issue | 10 |
container_start_page | 3706 |
container_title | Molecular biology of the cell |
container_volume | 13 |
creator | Shannon, Katie B Canman, Julie C Salmon, E D |
description | The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling. |
doi_str_mv | 10.1091/mbc.E02-03-0137 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_129977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72618297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</originalsourceid><addsrcrecordid>eNpVkU1P3DAQhq0KBBQ491b5xC2LP7KOfeiBIloqgZBQe-Bkje0JmzZrp7ED4t83q11BOc1I87zz9RLyibMFZ4afr51fXDFRMVkxLpsP5Igbaap6qdXenLOlqfhS1IfkY86_GeN1rZoDcsiF1LpR-og83EIQFGKgXyd3z2k7RV-6FGkXKdDcxcceqV-h_zOkLhY6QFk9wwstKyh0xDykGDItaYb7lDNNLS0Y89zhhOy30Gc83cVj8uvb1c_L6-rm7vuPy4ubytdKlUobJoWTziFw4xxHEDULwhnPhFfovAPhnW411wFqhYG3EELbGNS1ahuQx-TLtu8wuTUGj7GM0Nth7NYwvtgEnX1fid3KPqYny4UxTTPrz3b6Mf2dMBe77rLHvoeIacq2EYprYTbg-Rb043zpiO3rDM7sxg07u2GRCcuk3bgxKz7_v9obv3u__AfmyokJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72618297</pqid></control><display><type>article</type><title>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</title><source>MEDLINE</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Shannon, Katie B ; Canman, Julie C ; Salmon, E D</creator><contributor>Stearns, Tim</contributor><creatorcontrib>Shannon, Katie B ; Canman, Julie C ; Salmon, E D ; Stearns, Tim</creatorcontrib><description>The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.</description><identifier>ISSN: 1059-1524</identifier><identifier>EISSN: 1939-4586</identifier><identifier>DOI: 10.1091/mbc.E02-03-0137</identifier><identifier>PMID: 12388768</identifier><language>eng</language><publisher>United States: The American Society for Cell Biology</publisher><subject>Animals ; Antibodies - metabolism ; Antineoplastic Agents, Phytogenic - metabolism ; Calcium-Binding Proteins - genetics ; Calcium-Binding Proteins - metabolism ; Cell Cycle - physiology ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line ; Chromosomes - metabolism ; Epitopes - metabolism ; Fluorescence Recovery After Photobleaching ; Fluorescent Dyes - metabolism ; Genes, cdc ; HeLa Cells ; Humans ; Kinetochores - metabolism ; Mad2 Proteins ; Microinjections ; Microtubules - metabolism ; Protein Kinases - genetics ; Protein Kinases - metabolism ; Protein-Serine-Threonine Kinases ; Recombinant Fusion Proteins - metabolism ; Repressor Proteins ; Spindle Apparatus - metabolism ; Stress, Mechanical ; Temperature ; Vinblastine - metabolism</subject><ispartof>Molecular biology of the cell, 2002-10, Vol.13 (10), p.3706-3719</ispartof><rights>Copyright © 2002, The American Society for Cell Biology 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</citedby><cites>FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC129977/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC129977/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53768,53770</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12388768$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Stearns, Tim</contributor><creatorcontrib>Shannon, Katie B</creatorcontrib><creatorcontrib>Canman, Julie C</creatorcontrib><creatorcontrib>Salmon, E D</creatorcontrib><title>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</title><title>Molecular biology of the cell</title><addtitle>Mol Biol Cell</addtitle><description>The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.</description><subject>Animals</subject><subject>Antibodies - metabolism</subject><subject>Antineoplastic Agents, Phytogenic - metabolism</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Cell Cycle - physiology</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>Chromosomes - metabolism</subject><subject>Epitopes - metabolism</subject><subject>Fluorescence Recovery After Photobleaching</subject><subject>Fluorescent Dyes - metabolism</subject><subject>Genes, cdc</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Kinetochores - metabolism</subject><subject>Mad2 Proteins</subject><subject>Microinjections</subject><subject>Microtubules - metabolism</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Repressor Proteins</subject><subject>Spindle Apparatus - metabolism</subject><subject>Stress, Mechanical</subject><subject>Temperature</subject><subject>Vinblastine - metabolism</subject><issn>1059-1524</issn><issn>1939-4586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkU1P3DAQhq0KBBQ491b5xC2LP7KOfeiBIloqgZBQe-Bkje0JmzZrp7ED4t83q11BOc1I87zz9RLyibMFZ4afr51fXDFRMVkxLpsP5Igbaap6qdXenLOlqfhS1IfkY86_GeN1rZoDcsiF1LpR-og83EIQFGKgXyd3z2k7RV-6FGkXKdDcxcceqV-h_zOkLhY6QFk9wwstKyh0xDykGDItaYb7lDNNLS0Y89zhhOy30Gc83cVj8uvb1c_L6-rm7vuPy4ubytdKlUobJoWTziFw4xxHEDULwhnPhFfovAPhnW411wFqhYG3EELbGNS1ahuQx-TLtu8wuTUGj7GM0Nth7NYwvtgEnX1fid3KPqYny4UxTTPrz3b6Mf2dMBe77rLHvoeIacq2EYprYTbg-Rb043zpiO3rDM7sxg07u2GRCcuk3bgxKz7_v9obv3u__AfmyokJ</recordid><startdate>200210</startdate><enddate>200210</enddate><creator>Shannon, Katie B</creator><creator>Canman, Julie C</creator><creator>Salmon, E D</creator><general>The American Society for Cell Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200210</creationdate><title>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</title><author>Shannon, Katie B ; Canman, Julie C ; Salmon, E D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-89032b3bbea19bb1ea240d2b9c02c6ebcba2cb8f818da46ed1faddf79e846f7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Antibodies - metabolism</topic><topic>Antineoplastic Agents, Phytogenic - metabolism</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Cell Cycle - physiology</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>Chromosomes - metabolism</topic><topic>Epitopes - metabolism</topic><topic>Fluorescence Recovery After Photobleaching</topic><topic>Fluorescent Dyes - metabolism</topic><topic>Genes, cdc</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Kinetochores - metabolism</topic><topic>Mad2 Proteins</topic><topic>Microinjections</topic><topic>Microtubules - metabolism</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Repressor Proteins</topic><topic>Spindle Apparatus - metabolism</topic><topic>Stress, Mechanical</topic><topic>Temperature</topic><topic>Vinblastine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shannon, Katie B</creatorcontrib><creatorcontrib>Canman, Julie C</creatorcontrib><creatorcontrib>Salmon, E D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shannon, Katie B</au><au>Canman, Julie C</au><au>Salmon, E D</au><au>Stearns, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension</atitle><jtitle>Molecular biology of the cell</jtitle><addtitle>Mol Biol Cell</addtitle><date>2002-10</date><risdate>2002</risdate><volume>13</volume><issue>10</issue><spage>3706</spage><epage>3719</epage><pages>3706-3719</pages><issn>1059-1524</issn><eissn>1939-4586</eissn><abstract>The spindle checkpoint monitors microtubule attachment and tension at kinetochores to ensure proper chromosome segregation. Previously, PtK1 cells in hypothermic conditions (23 degrees C) were shown to have a pronounced mitotic delay, despite having normal numbers of kinetochore microtubules. At 23 degrees C, we found that PtK1 cells remained in metaphase for an average of 101 min, compared with 21 min for cells at 37 degrees C. The metaphase delay at 23 degrees C was abrogated by injection of Mad2 inhibitors, showing that Mad2 and the spindle checkpoint were responsible for the prolonged metaphase. Live cell imaging showed that kinetochore Mad2 became undetectable soon after chromosome congression. Measurements of the stretch between sister kinetochores at metaphase found a 24% decrease in tension at 23 degrees C, and metaphase kinetochores at 23 degrees C exhibited higher levels of 3F3/2, Bub1, and BubR1 compared with 37 degrees C. Microinjection of anti-BubR1 antibody abolished the metaphase delay at 23 degrees C, indicating that the higher kinetochore levels of BubR1 may contribute to the delay. Disrupting both Mad2 and BubR1 function induced anaphase with the same timing as single inhibitions, suggesting that these checkpoint genes function in the same pathway. We conclude that reduced tension at kinetochores with a full complement of kinetochore microtubules induces a checkpoint dependent metaphase delay associated with elevated amounts of kinetochore 3F3/2, Bub1, and BubR1 labeling.</abstract><cop>United States</cop><pub>The American Society for Cell Biology</pub><pmid>12388768</pmid><doi>10.1091/mbc.E02-03-0137</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-1524 |
ispartof | Molecular biology of the cell, 2002-10, Vol.13 (10), p.3706-3719 |
issn | 1059-1524 1939-4586 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_129977 |
source | MEDLINE; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Antibodies - metabolism Antineoplastic Agents, Phytogenic - metabolism Calcium-Binding Proteins - genetics Calcium-Binding Proteins - metabolism Cell Cycle - physiology Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line Chromosomes - metabolism Epitopes - metabolism Fluorescence Recovery After Photobleaching Fluorescent Dyes - metabolism Genes, cdc HeLa Cells Humans Kinetochores - metabolism Mad2 Proteins Microinjections Microtubules - metabolism Protein Kinases - genetics Protein Kinases - metabolism Protein-Serine-Threonine Kinases Recombinant Fusion Proteins - metabolism Repressor Proteins Spindle Apparatus - metabolism Stress, Mechanical Temperature Vinblastine - metabolism |
title | Mad2 and BubR1 function in a single checkpoint pathway that responds to a loss of tension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mad2%20and%20BubR1%20function%20in%20a%20single%20checkpoint%20pathway%20that%20responds%20to%20a%20loss%20of%20tension&rft.jtitle=Molecular%20biology%20of%20the%20cell&rft.au=Shannon,%20Katie%20B&rft.date=2002-10&rft.volume=13&rft.issue=10&rft.spage=3706&rft.epage=3719&rft.pages=3706-3719&rft.issn=1059-1524&rft.eissn=1939-4586&rft_id=info:doi/10.1091/mbc.E02-03-0137&rft_dat=%3Cproquest_pubme%3E72618297%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72618297&rft_id=info:pmid/12388768&rfr_iscdi=true |