Inactivation of Kv2.1 Potassium Channels

We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was sl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1998-04, Vol.74 (4), p.1779-1789
Hauptverfasser: Klemic, Kathryn G., Shieh, Char-Chang, Kirsch, Glenn E., Jones, Stephen W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1789
container_issue 4
container_start_page 1779
container_title Biophysical journal
container_volume 74
creator Klemic, Kathryn G.
Shieh, Char-Chang
Kirsch, Glenn E.
Jones, Stephen W.
description We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent ( τ = 4 s at 0 mV; τ = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid ( τ = 0.27 s at −140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon “excessive cumulative inactivation.” These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.
doi_str_mv 10.1016/S0006-3495(98)77888-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349598778889</els_id><sourcerecordid>79794881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-4547779b08dc71639fa6c6d667336868e576c8f40fd8d8ed1831131ca2c71d8d3</originalsourceid><addsrcrecordid>eNqFkFtLwzAUx4Moc14-wqBPMh86kzTXF0WGl-FAQX0OWZK6SNvMpi347e0uDH3y6cD5X87hB8AIwQmCiF29QghZmhFJx1Jcci6ESOUBGCJKcAqhYIdguLccg5MYPyFEmEI0AANJCYUEDsF4VmnT-E43PlRJyJOnDk9Q8hIaHaNvy2S61FXlingGjnJdRHe-m6fg_f7ubfqYzp8fZtPbeWoIw01KKOGcywUU1nDEMplrZphljGcZE0w4ypkROYG5FVY4i0SGUIaMxr29X2Wn4Hrbu2oXpbPGVU2tC7WqfanrbxW0V3-Vyi_VR-gUwlJSjPuCi11BHb5aFxtV-mhcUejKhTYqLrkkQqDeSLdGU4cYa5fvjyCo1ojVBrFa81NSqA1iJfvc6PeH-9SOaa_fbPWemuu8q1U03lXGWV870ygb_D8XfgAW6opm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79794881</pqid></control><display><type>article</type><title>Inactivation of Kv2.1 Potassium Channels</title><source>PubMed Central (Open Access)</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB Electronic Journals Library</source><creator>Klemic, Kathryn G. ; Shieh, Char-Chang ; Kirsch, Glenn E. ; Jones, Stephen W.</creator><creatorcontrib>Klemic, Kathryn G. ; Shieh, Char-Chang ; Kirsch, Glenn E. ; Jones, Stephen W.</creatorcontrib><description>We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent ( τ = 4 s at 0 mV; τ = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid ( τ = 0.27 s at −140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon “excessive cumulative inactivation.” These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(98)77888-9</identifier><identifier>PMID: 9545040</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Allosteric Regulation ; Animals ; Biophysical Phenomena ; Biophysics ; Delayed Rectifier Potassium Channels ; Female ; In Vitro Techniques ; Kinetics ; Membrane Potentials ; Models, Biological ; Oocytes - metabolism ; Patch-Clamp Techniques ; Potassium Channel Blockers ; Potassium Channels ; Potassium Channels, Voltage-Gated ; Rats ; Recombinant Proteins - antagonists &amp; inhibitors ; Shab Potassium Channels ; Xenopus</subject><ispartof>Biophysical journal, 1998-04, Vol.74 (4), p.1779-1789</ispartof><rights>1998 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-4547779b08dc71639fa6c6d667336868e576c8f40fd8d8ed1831131ca2c71d8d3</citedby><cites>FETCH-LOGICAL-c462t-4547779b08dc71639fa6c6d667336868e576c8f40fd8d8ed1831131ca2c71d8d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299522/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(98)77888-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3548,27922,27923,45993,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9545040$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klemic, Kathryn G.</creatorcontrib><creatorcontrib>Shieh, Char-Chang</creatorcontrib><creatorcontrib>Kirsch, Glenn E.</creatorcontrib><creatorcontrib>Jones, Stephen W.</creatorcontrib><title>Inactivation of Kv2.1 Potassium Channels</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent ( τ = 4 s at 0 mV; τ = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid ( τ = 0.27 s at −140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon “excessive cumulative inactivation.” These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.</description><subject>Allosteric Regulation</subject><subject>Animals</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Delayed Rectifier Potassium Channels</subject><subject>Female</subject><subject>In Vitro Techniques</subject><subject>Kinetics</subject><subject>Membrane Potentials</subject><subject>Models, Biological</subject><subject>Oocytes - metabolism</subject><subject>Patch-Clamp Techniques</subject><subject>Potassium Channel Blockers</subject><subject>Potassium Channels</subject><subject>Potassium Channels, Voltage-Gated</subject><subject>Rats</subject><subject>Recombinant Proteins - antagonists &amp; inhibitors</subject><subject>Shab Potassium Channels</subject><subject>Xenopus</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkFtLwzAUx4Moc14-wqBPMh86kzTXF0WGl-FAQX0OWZK6SNvMpi347e0uDH3y6cD5X87hB8AIwQmCiF29QghZmhFJx1Jcci6ESOUBGCJKcAqhYIdguLccg5MYPyFEmEI0AANJCYUEDsF4VmnT-E43PlRJyJOnDk9Q8hIaHaNvy2S61FXlingGjnJdRHe-m6fg_f7ubfqYzp8fZtPbeWoIw01KKOGcywUU1nDEMplrZphljGcZE0w4ypkROYG5FVY4i0SGUIaMxr29X2Wn4Hrbu2oXpbPGVU2tC7WqfanrbxW0V3-Vyi_VR-gUwlJSjPuCi11BHb5aFxtV-mhcUejKhTYqLrkkQqDeSLdGU4cYa5fvjyCo1ojVBrFa81NSqA1iJfvc6PeH-9SOaa_fbPWemuu8q1U03lXGWV870ygb_D8XfgAW6opm</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Klemic, Kathryn G.</creator><creator>Shieh, Char-Chang</creator><creator>Kirsch, Glenn E.</creator><creator>Jones, Stephen W.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980401</creationdate><title>Inactivation of Kv2.1 Potassium Channels</title><author>Klemic, Kathryn G. ; Shieh, Char-Chang ; Kirsch, Glenn E. ; Jones, Stephen W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-4547779b08dc71639fa6c6d667336868e576c8f40fd8d8ed1831131ca2c71d8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Allosteric Regulation</topic><topic>Animals</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Delayed Rectifier Potassium Channels</topic><topic>Female</topic><topic>In Vitro Techniques</topic><topic>Kinetics</topic><topic>Membrane Potentials</topic><topic>Models, Biological</topic><topic>Oocytes - metabolism</topic><topic>Patch-Clamp Techniques</topic><topic>Potassium Channel Blockers</topic><topic>Potassium Channels</topic><topic>Potassium Channels, Voltage-Gated</topic><topic>Rats</topic><topic>Recombinant Proteins - antagonists &amp; inhibitors</topic><topic>Shab Potassium Channels</topic><topic>Xenopus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klemic, Kathryn G.</creatorcontrib><creatorcontrib>Shieh, Char-Chang</creatorcontrib><creatorcontrib>Kirsch, Glenn E.</creatorcontrib><creatorcontrib>Jones, Stephen W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klemic, Kathryn G.</au><au>Shieh, Char-Chang</au><au>Kirsch, Glenn E.</au><au>Jones, Stephen W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inactivation of Kv2.1 Potassium Channels</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>74</volume><issue>4</issue><spage>1779</spage><epage>1789</epage><pages>1779-1789</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent ( τ = 4 s at 0 mV; τ = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid ( τ = 0.27 s at −140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon “excessive cumulative inactivation.” These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9545040</pmid><doi>10.1016/S0006-3495(98)77888-9</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1998-04, Vol.74 (4), p.1779-1789
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299522
source PubMed Central (Open Access); MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB Electronic Journals Library
subjects Allosteric Regulation
Animals
Biophysical Phenomena
Biophysics
Delayed Rectifier Potassium Channels
Female
In Vitro Techniques
Kinetics
Membrane Potentials
Models, Biological
Oocytes - metabolism
Patch-Clamp Techniques
Potassium Channel Blockers
Potassium Channels
Potassium Channels, Voltage-Gated
Rats
Recombinant Proteins - antagonists & inhibitors
Shab Potassium Channels
Xenopus
title Inactivation of Kv2.1 Potassium Channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A38%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inactivation%20of%20Kv2.1%20Potassium%20Channels&rft.jtitle=Biophysical%20journal&rft.au=Klemic,%20Kathryn%20G.&rft.date=1998-04-01&rft.volume=74&rft.issue=4&rft.spage=1779&rft.epage=1789&rft.pages=1779-1789&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(98)77888-9&rft_dat=%3Cproquest_pubme%3E79794881%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79794881&rft_id=info:pmid/9545040&rft_els_id=S0006349598778889&rfr_iscdi=true