Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries
Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1998, Vol.74 (1), p.475-486 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 486 |
---|---|
container_issue | 1 |
container_start_page | 475 |
container_title | Biophysical journal |
container_volume | 74 |
creator | Fatt, Irving Giasson, Claude J. Mueller, Thomas D. |
description | Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO
2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5
×
10
−6
cm
2/s in the stroma and 0.4
×
10
−6
cm
2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma,
D(H
+)
=
11.8
×
10
−6
cm
2/s;
D(HCO
3
−)
=
1.5
×
10
−6
cm
2/s; and 2) epithelium,
D(H
+)
=
1.9
×
10
−6
cm
2/s;
D(HCO
3
−)
=
0.22
×
10
−6
cm
2/s. |
doi_str_mv | 10.1016/S0006-3495(98)77805-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349598778051</els_id><sourcerecordid>79663776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIVNLCT6jkE4LDgr3rtdcXUEn5qNTCoeVsOfYsGbSxg-2NtP8ep4kiOHEaye_HjPxU1SWjbxll4t09pVTULVfda9W_kbKnXc2eVAvW8aamtBdPq8XJ8rw6T-kXpazpKDurzhTnquX9osrfgq_vMxg3l2EykGschilh8AQ9MeRuGjOOZoYIjjxgShOQG48Zi9eR1UzujMftNJq8j4SBLNewQWtGcmUz7jDPxGSS10A-hsk7ExHSi-rZYMYEL4_zovrx-dPD8mt9-_3LzfLqtrZcNLkWhvdixZUzrRlsOV6BhL6l3UoK4fqhZ4NgvBk6qZToyqvsGifVqikxJgVvL6r3h97ttNqAs-BzNKPeRtyYOOtgUP-reFzrn2GnWaMUp7QUvDoWxPB7gpT1BpOFcTQewpS0VEK0Uopi7A5GG0NKEYbTEkb1Hpd-xKX3LLTq9SMuzUru8u8LT6kjn6J_OOhQvmmHEHWyCN6Cwwg2axfwPxv-APcfpj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79663776</pqid></control><display><type>article</type><title>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fatt, Irving ; Giasson, Claude J. ; Mueller, Thomas D.</creator><creatorcontrib>Fatt, Irving ; Giasson, Claude J. ; Mueller, Thomas D.</creatorcontrib><description>Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO
2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5
×
10
−6
cm
2/s in the stroma and 0.4
×
10
−6
cm
2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma,
D(H
+)
=
11.8
×
10
−6
cm
2/s;
D(HCO
3
−)
=
1.5
×
10
−6
cm
2/s; and 2) epithelium,
D(H
+)
=
1.9
×
10
−6
cm
2/s;
D(HCO
3
−)
=
0.22
×
10
−6
cm
2/s.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(98)77805-1</identifier><identifier>PMID: 9449348</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bicarbonates - metabolism ; Cornea - physiology ; Diffusion ; Epithelial Cells - physiology ; Hydrogen-Ion Concentration ; Kinetics ; Mammals ; Mathematics ; Models, Biological ; Rabbits ; Time Factors</subject><ispartof>Biophysical journal, 1998, Vol.74 (1), p.475-486</ispartof><rights>1998 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</citedby><cites>FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299400/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(98)77805-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,4009,27902,27903,27904,45974,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9449348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatt, Irving</creatorcontrib><creatorcontrib>Giasson, Claude J.</creatorcontrib><creatorcontrib>Mueller, Thomas D.</creatorcontrib><title>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO
2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5
×
10
−6
cm
2/s in the stroma and 0.4
×
10
−6
cm
2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma,
D(H
+)
=
11.8
×
10
−6
cm
2/s;
D(HCO
3
−)
=
1.5
×
10
−6
cm
2/s; and 2) epithelium,
D(H
+)
=
1.9
×
10
−6
cm
2/s;
D(HCO
3
−)
=
0.22
×
10
−6
cm
2/s.</description><subject>Animals</subject><subject>Bicarbonates - metabolism</subject><subject>Cornea - physiology</subject><subject>Diffusion</subject><subject>Epithelial Cells - physiology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Mammals</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Rabbits</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhlcIVNLCT6jkE4LDgr3rtdcXUEn5qNTCoeVsOfYsGbSxg-2NtP8ep4kiOHEaye_HjPxU1SWjbxll4t09pVTULVfda9W_kbKnXc2eVAvW8aamtBdPq8XJ8rw6T-kXpazpKDurzhTnquX9osrfgq_vMxg3l2EykGschilh8AQ9MeRuGjOOZoYIjjxgShOQG48Zi9eR1UzujMftNJq8j4SBLNewQWtGcmUz7jDPxGSS10A-hsk7ExHSi-rZYMYEL4_zovrx-dPD8mt9-_3LzfLqtrZcNLkWhvdixZUzrRlsOV6BhL6l3UoK4fqhZ4NgvBk6qZToyqvsGifVqikxJgVvL6r3h97ttNqAs-BzNKPeRtyYOOtgUP-reFzrn2GnWaMUp7QUvDoWxPB7gpT1BpOFcTQewpS0VEK0Uopi7A5GG0NKEYbTEkb1Hpd-xKX3LLTq9SMuzUru8u8LT6kjn6J_OOhQvmmHEHWyCN6Cwwg2axfwPxv-APcfpj8</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Fatt, Irving</creator><creator>Giasson, Claude J.</creator><creator>Mueller, Thomas D.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1998</creationdate><title>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</title><author>Fatt, Irving ; Giasson, Claude J. ; Mueller, Thomas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Bicarbonates - metabolism</topic><topic>Cornea - physiology</topic><topic>Diffusion</topic><topic>Epithelial Cells - physiology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Mammals</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Rabbits</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatt, Irving</creatorcontrib><creatorcontrib>Giasson, Claude J.</creatorcontrib><creatorcontrib>Mueller, Thomas D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatt, Irving</au><au>Giasson, Claude J.</au><au>Mueller, Thomas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1998</date><risdate>1998</risdate><volume>74</volume><issue>1</issue><spage>475</spage><epage>486</epage><pages>475-486</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO
2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5
×
10
−6
cm
2/s in the stroma and 0.4
×
10
−6
cm
2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma,
D(H
+)
=
11.8
×
10
−6
cm
2/s;
D(HCO
3
−)
=
1.5
×
10
−6
cm
2/s; and 2) epithelium,
D(H
+)
=
1.9
×
10
−6
cm
2/s;
D(HCO
3
−)
=
0.22
×
10
−6
cm
2/s.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9449348</pmid><doi>10.1016/S0006-3495(98)77805-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1998, Vol.74 (1), p.475-486 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299400 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Animals Bicarbonates - metabolism Cornea - physiology Diffusion Epithelial Cells - physiology Hydrogen-Ion Concentration Kinetics Mammals Mathematics Models, Biological Rabbits Time Factors |
title | Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Steady-State%20Diffusion%20in%20a%20Multilayered%20Tissue%20Initiated%20by%20Manipulation%20of%20Chemical%20Activity%20at%20the%20Boundaries&rft.jtitle=Biophysical%20journal&rft.au=Fatt,%20Irving&rft.date=1998&rft.volume=74&rft.issue=1&rft.spage=475&rft.epage=486&rft.pages=475-486&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(98)77805-1&rft_dat=%3Cproquest_pubme%3E79663776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79663776&rft_id=info:pmid/9449348&rft_els_id=S0006349598778051&rfr_iscdi=true |