Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries

Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1998, Vol.74 (1), p.475-486
Hauptverfasser: Fatt, Irving, Giasson, Claude J., Mueller, Thomas D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 486
container_issue 1
container_start_page 475
container_title Biophysical journal
container_volume 74
creator Fatt, Irving
Giasson, Claude J.
Mueller, Thomas D.
description Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO 2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5 × 10 −6 cm 2/s in the stroma and 0.4 × 10 −6 cm 2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma, D(H +) = 11.8 × 10 −6 cm 2/s; D(HCO 3 −) = 1.5 × 10 −6 cm 2/s; and 2) epithelium, D(H +) = 1.9 × 10 −6 cm 2/s; D(HCO 3 −) = 0.22 × 10 −6 cm 2/s.
doi_str_mv 10.1016/S0006-3495(98)77805-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349598778051</els_id><sourcerecordid>79663776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhlcIVNLCT6jkE4LDgr3rtdcXUEn5qNTCoeVsOfYsGbSxg-2NtP8ep4kiOHEaye_HjPxU1SWjbxll4t09pVTULVfda9W_kbKnXc2eVAvW8aamtBdPq8XJ8rw6T-kXpazpKDurzhTnquX9osrfgq_vMxg3l2EykGschilh8AQ9MeRuGjOOZoYIjjxgShOQG48Zi9eR1UzujMftNJq8j4SBLNewQWtGcmUz7jDPxGSS10A-hsk7ExHSi-rZYMYEL4_zovrx-dPD8mt9-_3LzfLqtrZcNLkWhvdixZUzrRlsOV6BhL6l3UoK4fqhZ4NgvBk6qZToyqvsGifVqikxJgVvL6r3h97ttNqAs-BzNKPeRtyYOOtgUP-reFzrn2GnWaMUp7QUvDoWxPB7gpT1BpOFcTQewpS0VEK0Uopi7A5GG0NKEYbTEkb1Hpd-xKX3LLTq9SMuzUru8u8LT6kjn6J_OOhQvmmHEHWyCN6Cwwg2axfwPxv-APcfpj8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79663776</pqid></control><display><type>article</type><title>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Fatt, Irving ; Giasson, Claude J. ; Mueller, Thomas D.</creator><creatorcontrib>Fatt, Irving ; Giasson, Claude J. ; Mueller, Thomas D.</creatorcontrib><description>Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO 2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5 × 10 −6 cm 2/s in the stroma and 0.4 × 10 −6 cm 2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma, D(H +) = 11.8 × 10 −6 cm 2/s; D(HCO 3 −) = 1.5 × 10 −6 cm 2/s; and 2) epithelium, D(H +) = 1.9 × 10 −6 cm 2/s; D(HCO 3 −) = 0.22 × 10 −6 cm 2/s.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(98)77805-1</identifier><identifier>PMID: 9449348</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Bicarbonates - metabolism ; Cornea - physiology ; Diffusion ; Epithelial Cells - physiology ; Hydrogen-Ion Concentration ; Kinetics ; Mammals ; Mathematics ; Models, Biological ; Rabbits ; Time Factors</subject><ispartof>Biophysical journal, 1998, Vol.74 (1), p.475-486</ispartof><rights>1998 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</citedby><cites>FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299400/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(98)77805-1$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,4009,27902,27903,27904,45974,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9449348$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fatt, Irving</creatorcontrib><creatorcontrib>Giasson, Claude J.</creatorcontrib><creatorcontrib>Mueller, Thomas D.</creatorcontrib><title>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO 2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5 × 10 −6 cm 2/s in the stroma and 0.4 × 10 −6 cm 2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma, D(H +) = 11.8 × 10 −6 cm 2/s; D(HCO 3 −) = 1.5 × 10 −6 cm 2/s; and 2) epithelium, D(H +) = 1.9 × 10 −6 cm 2/s; D(HCO 3 −) = 0.22 × 10 −6 cm 2/s.</description><subject>Animals</subject><subject>Bicarbonates - metabolism</subject><subject>Cornea - physiology</subject><subject>Diffusion</subject><subject>Epithelial Cells - physiology</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Mammals</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Rabbits</subject><subject>Time Factors</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhlcIVNLCT6jkE4LDgr3rtdcXUEn5qNTCoeVsOfYsGbSxg-2NtP8ep4kiOHEaye_HjPxU1SWjbxll4t09pVTULVfda9W_kbKnXc2eVAvW8aamtBdPq8XJ8rw6T-kXpazpKDurzhTnquX9osrfgq_vMxg3l2EykGschilh8AQ9MeRuGjOOZoYIjjxgShOQG48Zi9eR1UzujMftNJq8j4SBLNewQWtGcmUz7jDPxGSS10A-hsk7ExHSi-rZYMYEL4_zovrx-dPD8mt9-_3LzfLqtrZcNLkWhvdixZUzrRlsOV6BhL6l3UoK4fqhZ4NgvBk6qZToyqvsGifVqikxJgVvL6r3h97ttNqAs-BzNKPeRtyYOOtgUP-reFzrn2GnWaMUp7QUvDoWxPB7gpT1BpOFcTQewpS0VEK0Uopi7A5GG0NKEYbTEkb1Hpd-xKX3LLTq9SMuzUru8u8LT6kjn6J_OOhQvmmHEHWyCN6Cwwg2axfwPxv-APcfpj8</recordid><startdate>1998</startdate><enddate>1998</enddate><creator>Fatt, Irving</creator><creator>Giasson, Claude J.</creator><creator>Mueller, Thomas D.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>1998</creationdate><title>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</title><author>Fatt, Irving ; Giasson, Claude J. ; Mueller, Thomas D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-6a486b49da3afc0019e7e8305b766d8f81f6142f5799655b7752d79b248617643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Bicarbonates - metabolism</topic><topic>Cornea - physiology</topic><topic>Diffusion</topic><topic>Epithelial Cells - physiology</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Mammals</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Rabbits</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatt, Irving</creatorcontrib><creatorcontrib>Giasson, Claude J.</creatorcontrib><creatorcontrib>Mueller, Thomas D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatt, Irving</au><au>Giasson, Claude J.</au><au>Mueller, Thomas D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1998</date><risdate>1998</risdate><volume>74</volume><issue>1</issue><spage>475</spage><epage>486</epage><pages>475-486</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Diffusion of ionic and nonionic species in multilayered tissues plays an important role in the metabolic processes that take place in these tissues. To create a mathematical model of these diffusion processes, we have chosen as an example hydrogen-bicarbonate ion pair diffusion within the mammalian cornea. This choice was based on the availability of experimental data on this system. The diffusion coefficient of the hydrogen-bicarbonate ion pair in corneal stroma and epithelium is calculated from the observed change in pH in the stroma when conditions at the corneal anterior epithelial surface are changed while the posterior surface is continually bathed with a Ringer’s solution in equilibrium with a CO 2-gas air mixture. Matching experimental results to a mathematical model of the cornea as a two-layer diffusion system yields, at 37°C, a diffusion coefficient of the hydrogen-bicarbonate ion pair of 2.5 × 10 −6 cm 2/s in the stroma and 0.4 × 10 −6 cm 2/s in the epithelium. Application of the Nernst-Einstein equation to these data gives the following diffusion coefficients in the two layers: 1) stroma, D(H +) = 11.8 × 10 −6 cm 2/s; D(HCO 3 −) = 1.5 × 10 −6 cm 2/s; and 2) epithelium, D(H +) = 1.9 × 10 −6 cm 2/s; D(HCO 3 −) = 0.22 × 10 −6 cm 2/s.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9449348</pmid><doi>10.1016/S0006-3495(98)77805-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1998, Vol.74 (1), p.475-486
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299400
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Bicarbonates - metabolism
Cornea - physiology
Diffusion
Epithelial Cells - physiology
Hydrogen-Ion Concentration
Kinetics
Mammals
Mathematics
Models, Biological
Rabbits
Time Factors
title Non-Steady-State Diffusion in a Multilayered Tissue Initiated by Manipulation of Chemical Activity at the Boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A23%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Steady-State%20Diffusion%20in%20a%20Multilayered%20Tissue%20Initiated%20by%20Manipulation%20of%20Chemical%20Activity%20at%20the%20Boundaries&rft.jtitle=Biophysical%20journal&rft.au=Fatt,%20Irving&rft.date=1998&rft.volume=74&rft.issue=1&rft.spage=475&rft.epage=486&rft.pages=475-486&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(98)77805-1&rft_dat=%3Cproquest_pubme%3E79663776%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79663776&rft_id=info:pmid/9449348&rft_els_id=S0006349598778051&rfr_iscdi=true