How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures
Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA‐binding domains (Dbds) form independent structural units. Despite these similaritie...
Gespeichert in:
Veröffentlicht in: | EMBO reports 2005-01, Vol.6 (1), p.39-45 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 39 |
container_title | EMBO reports |
container_volume | 6 |
creator | Court, Robert Chapman, Lynda Fairall, Louise Rhodes, Daniela |
description | Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA‐binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X‐ray crystal structures of both TRF1‐ and TRF2‐Dbds in complex with telomeric DNA (2.0 and 1.8 Å resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G‐C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein–DNA interactions. The binding of the TRF2‐Dbd to the DNA double helix shows no distortions that would account for the promotion of t‐loops in which TRF2 has been implicated. |
doi_str_mv | 10.1038/sj.embor.7400314 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1013190531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6484-c8a4572db8a54b0c36f9020e3997304460cbe6b1d39dc9e14beb44ec1df3a7d03</originalsourceid><addsrcrecordid>eNqFkc9v0zAUxyMEYmNw54QsDtxS_CuOzQFpG1uHNIo0FQ1xsRzntXVJ4mInLeWvJyXVOjiwk5_0Pt_ve37fJHlJ8IhgJt_G5QjqwodRzjFmhD9KjgkXKmUkl4_3NaXk61HyLMYlxjhTuXyaHJFMYClIfpysr_wGtQtAi642DWqh8jUEZ9Eq-BZcE9H05pIg05S7gqIA1s8b9wvuoR8mp--QQWsHGzQLvkYLN1-kAaKvutb5Btmwja2pUGxDZ9uu7zxPnsxMFeHF_j1JvlxeTM-v0uvP44_np9epFVzy1ErDs5yWhTQZL7BlYqYwxcCUyhnmXGBbgChIyVRpFRBeQME5WFLOmMlLzE6S94PvqitqKC00bTCVXgVXm7DV3jj9d6dxCz33a02oUpTy3uDN3iD4Hx3EVtcuWqgq04DvohY5y3Ip6IMgUYJKJlQPvv4HXPouNP0VNMUyo5zw3Vg8QDb4GAPM7lYmWO-i13Gp_0Sv99H3klf3v3oQ7LPuATUAG1fB9kFDffHp7OZgTgZt7GXNHMJh6f8slA4aF1v4eTfPhO-7q-WZvp2M9bfbyVSejYnO2W_uxt8k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208524144</pqid></control><display><type>article</type><title>How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Court, Robert ; Chapman, Lynda ; Fairall, Louise ; Rhodes, Daniela</creator><creatorcontrib>Court, Robert ; Chapman, Lynda ; Fairall, Louise ; Rhodes, Daniela</creatorcontrib><description>Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA‐binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X‐ray crystal structures of both TRF1‐ and TRF2‐Dbds in complex with telomeric DNA (2.0 and 1.8 Å resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G‐C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein–DNA interactions. The binding of the TRF2‐Dbd to the DNA double helix shows no distortions that would account for the promotion of t‐loops in which TRF2 has been implicated.</description><identifier>ISSN: 1469-221X</identifier><identifier>EISSN: 1469-3178</identifier><identifier>EISSN: 1469-221X</identifier><identifier>DOI: 10.1038/sj.embor.7400314</identifier><identifier>PMID: 15608617</identifier><identifier>CODEN: ERMEAX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Amino Acid Sequence ; Binding Sites ; Crystallography, X-Ray ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; Homeodomain Proteins - chemistry ; Homeodomain Proteins - metabolism ; Humans ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Nucleic Acid Conformation ; Protein Structure, Tertiary ; Scientific Report ; Sequence Alignment ; Telomere - chemistry ; Telomere - metabolism ; telomeric DNA recognition ; Telomeric Repeat Binding Protein 1 - chemistry ; Telomeric Repeat Binding Protein 1 - metabolism ; Telomeric Repeat Binding Protein 2 - chemistry ; Telomeric Repeat Binding Protein 2 - metabolism ; TRF1 ; TRF2 ; Water - chemistry ; Water - metabolism ; water-mediated contacts ; X-ray crystallography ; Yeasts</subject><ispartof>EMBO reports, 2005-01, Vol.6 (1), p.39-45</ispartof><rights>European Molecular Biology Organization 2004</rights><rights>Copyright © 2004 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Jan 2005</rights><rights>Copyright © 2005, European Molecular Biology Organization 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6484-c8a4572db8a54b0c36f9020e3997304460cbe6b1d39dc9e14beb44ec1df3a7d03</citedby><cites>FETCH-LOGICAL-c6484-c8a4572db8a54b0c36f9020e3997304460cbe6b1d39dc9e14beb44ec1df3a7d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299224/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299224/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15608617$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Court, Robert</creatorcontrib><creatorcontrib>Chapman, Lynda</creatorcontrib><creatorcontrib>Fairall, Louise</creatorcontrib><creatorcontrib>Rhodes, Daniela</creatorcontrib><title>How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures</title><title>EMBO reports</title><addtitle>EMBO Rep</addtitle><addtitle>EMBO Rep</addtitle><description>Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA‐binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X‐ray crystal structures of both TRF1‐ and TRF2‐Dbds in complex with telomeric DNA (2.0 and 1.8 Å resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G‐C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein–DNA interactions. The binding of the TRF2‐Dbd to the DNA double helix shows no distortions that would account for the promotion of t‐loops in which TRF2 has been implicated.</description><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Crystallography, X-Ray</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>Homeodomain Proteins - chemistry</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Structure, Tertiary</subject><subject>Scientific Report</subject><subject>Sequence Alignment</subject><subject>Telomere - chemistry</subject><subject>Telomere - metabolism</subject><subject>telomeric DNA recognition</subject><subject>Telomeric Repeat Binding Protein 1 - chemistry</subject><subject>Telomeric Repeat Binding Protein 1 - metabolism</subject><subject>Telomeric Repeat Binding Protein 2 - chemistry</subject><subject>Telomeric Repeat Binding Protein 2 - metabolism</subject><subject>TRF1</subject><subject>TRF2</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><subject>water-mediated contacts</subject><subject>X-ray crystallography</subject><subject>Yeasts</subject><issn>1469-221X</issn><issn>1469-3178</issn><issn>1469-221X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9v0zAUxyMEYmNw54QsDtxS_CuOzQFpG1uHNIo0FQ1xsRzntXVJ4mInLeWvJyXVOjiwk5_0Pt_ve37fJHlJ8IhgJt_G5QjqwodRzjFmhD9KjgkXKmUkl4_3NaXk61HyLMYlxjhTuXyaHJFMYClIfpysr_wGtQtAi642DWqh8jUEZ9Eq-BZcE9H05pIg05S7gqIA1s8b9wvuoR8mp--QQWsHGzQLvkYLN1-kAaKvutb5Btmwja2pUGxDZ9uu7zxPnsxMFeHF_j1JvlxeTM-v0uvP44_np9epFVzy1ErDs5yWhTQZL7BlYqYwxcCUyhnmXGBbgChIyVRpFRBeQME5WFLOmMlLzE6S94PvqitqKC00bTCVXgVXm7DV3jj9d6dxCz33a02oUpTy3uDN3iD4Hx3EVtcuWqgq04DvohY5y3Ip6IMgUYJKJlQPvv4HXPouNP0VNMUyo5zw3Vg8QDb4GAPM7lYmWO-i13Gp_0Sv99H3klf3v3oQ7LPuATUAG1fB9kFDffHp7OZgTgZt7GXNHMJh6f8slA4aF1v4eTfPhO-7q-WZvp2M9bfbyVSejYnO2W_uxt8k</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Court, Robert</creator><creator>Chapman, Lynda</creator><creator>Fairall, Louise</creator><creator>Rhodes, Daniela</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200501</creationdate><title>How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures</title><author>Court, Robert ; Chapman, Lynda ; Fairall, Louise ; Rhodes, Daniela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6484-c8a4572db8a54b0c36f9020e3997304460cbe6b1d39dc9e14beb44ec1df3a7d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Crystallography, X-Ray</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>Homeodomain Proteins - chemistry</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Structure, Tertiary</topic><topic>Scientific Report</topic><topic>Sequence Alignment</topic><topic>Telomere - chemistry</topic><topic>Telomere - metabolism</topic><topic>telomeric DNA recognition</topic><topic>Telomeric Repeat Binding Protein 1 - chemistry</topic><topic>Telomeric Repeat Binding Protein 1 - metabolism</topic><topic>Telomeric Repeat Binding Protein 2 - chemistry</topic><topic>Telomeric Repeat Binding Protein 2 - metabolism</topic><topic>TRF1</topic><topic>TRF2</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><topic>water-mediated contacts</topic><topic>X-ray crystallography</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Court, Robert</creatorcontrib><creatorcontrib>Chapman, Lynda</creatorcontrib><creatorcontrib>Fairall, Louise</creatorcontrib><creatorcontrib>Rhodes, Daniela</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>EMBO reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Court, Robert</au><au>Chapman, Lynda</au><au>Fairall, Louise</au><au>Rhodes, Daniela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures</atitle><jtitle>EMBO reports</jtitle><stitle>EMBO Rep</stitle><addtitle>EMBO Rep</addtitle><date>2005-01</date><risdate>2005</risdate><volume>6</volume><issue>1</issue><spage>39</spage><epage>45</epage><pages>39-45</pages><issn>1469-221X</issn><eissn>1469-3178</eissn><eissn>1469-221X</eissn><coden>ERMEAX</coden><abstract>Human telomeres consist of tandem arrays of TTAGGG sequence repeats that are specifically bound by two proteins, TRF1 and TRF2. They bind to DNA as preformed homodimers and have the same architecture in which the DNA‐binding domains (Dbds) form independent structural units. Despite these similarities, TRF1 and TRF2 have different functions at telomeres. The X‐ray crystal structures of both TRF1‐ and TRF2‐Dbds in complex with telomeric DNA (2.0 and 1.8 Å resolution, respectively) show that they recognize the same TAGGGTT binding site by means of homeodomains, as does the yeast telomeric protein Rap1p. Two of the three G‐C base pairs that characterize telomeric repeats are recognized specifically and an unusually large number of water molecules mediate protein–DNA interactions. The binding of the TRF2‐Dbd to the DNA double helix shows no distortions that would account for the promotion of t‐loops in which TRF2 has been implicated.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>15608617</pmid><doi>10.1038/sj.embor.7400314</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1469-221X |
ispartof | EMBO reports, 2005-01, Vol.6 (1), p.39-45 |
issn | 1469-221X 1469-3178 1469-221X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299224 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino Acid Sequence Binding Sites Crystallography, X-Ray Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism Homeodomain Proteins - chemistry Homeodomain Proteins - metabolism Humans Models, Molecular Molecular Sequence Data Nuclear Magnetic Resonance, Biomolecular Nucleic Acid Conformation Protein Structure, Tertiary Scientific Report Sequence Alignment Telomere - chemistry Telomere - metabolism telomeric DNA recognition Telomeric Repeat Binding Protein 1 - chemistry Telomeric Repeat Binding Protein 1 - metabolism Telomeric Repeat Binding Protein 2 - chemistry Telomeric Repeat Binding Protein 2 - metabolism TRF1 TRF2 Water - chemistry Water - metabolism water-mediated contacts X-ray crystallography Yeasts |
title | How the human telomeric proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution crystal structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T23%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20the%20human%20telomeric%20proteins%20TRF1%20and%20TRF2%20recognize%20telomeric%20DNA:%20a%20view%20from%20high-resolution%20crystal%20structures&rft.jtitle=EMBO%20reports&rft.au=Court,%20Robert&rft.date=2005-01&rft.volume=6&rft.issue=1&rft.spage=39&rft.epage=45&rft.pages=39-45&rft.issn=1469-221X&rft.eissn=1469-3178&rft.coden=ERMEAX&rft_id=info:doi/10.1038/sj.embor.7400314&rft_dat=%3Cproquest_pubme%3E1013190531%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=208524144&rft_id=info:pmid/15608617&rfr_iscdi=true |