XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions

The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2001-11, Vol.20 (22), p.6530-6539
Hauptverfasser: Vidal, Antonio E., Boiteux, Serge, Hickson, Ian D., Radicella, J. Pablo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6539
container_issue 22
container_start_page 6530
container_title The EMBO journal
container_volume 20
creator Vidal, Antonio E.
Boiteux, Serge
Hickson, Ian D.
Radicella, J. Pablo
description The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.
doi_str_mv 10.1093/emboj/20.22.6530
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18130025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6672-2be38620333207145b6bca30ebcdf9af24c11191278e7c1ea6a7084d33c7be6e3</originalsourceid><addsrcrecordid>eNqFksFv0zAUxiMEYmVw5wKyOHBL52cndnLgMLoxQGWICQQ3y3FeW5fULnYC7L_HJVU3kBAnS_6-3_P79DnLHgOdAq35CW4avz5hdMrYVJSc3skmUAiaMyrLu9mEMgF5AVV9lD2IcU0pLSsJ97MjAEllwfgk675czWZAjPehtU73GEm_QmKd7a3uiHYt6dItib1eJs0vyNnlKdGNjtaQaJMScKttSFTww3JFtsH3aF2-P9OkHoM2vfUuPszuLXQX8dH-PM4-vTr_OHudz99fvJmdznMjhGQ5a5BXglHOeQoCRdmIxmhOsTHtotYLVhgAqIHJCqUB1EJLWhUt50Y2KJAfZy_Guduh2WBr0PVBd2ob7EaHa-W1VX8qzq7U0n9XwErJWOKf7_ngvw0Ye7Wx0WDXaYd-iAoq4JSyMhmf_WVc-yG4lE1BXbKyFgKSiY4mE3yMAReHRYCqXY3qd42KUcWY2tWYkKe3A9wA-96SoR4NP2yH1_8dqM7fvXwry7qAYpcORjYmzC0x3Fr63ws9GZn0RYaAhwdvZuajbmOPPw-yDl-VkFyW6vPlhWIfrgo6L85UzX8B_-7VZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259661</pqid></control><display><type>article</type><title>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vidal, Antonio E. ; Boiteux, Serge ; Hickson, Ian D. ; Radicella, J. Pablo</creator><creatorcontrib>Vidal, Antonio E. ; Boiteux, Serge ; Hickson, Ian D. ; Radicella, J. Pablo</creatorcontrib><description>The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.22.6530</identifier><identifier>PMID: 11707423</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>abasic sites ; Amino acids ; Animals ; AP endonuclease ; APE1 ; APE1 protein ; base excision repair ; Binding Sites ; Blotting, Western ; Carbon-Oxygen Lyases - metabolism ; Catalysis ; CHO Cells ; Cricetinae ; Deoxyribonuclease IV (Phage T4-Induced) ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA Damage ; DNA Primers - chemistry ; DNA Repair ; DNA, Complementary - metabolism ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; DNA-Binding Proteins - metabolism ; Dose-Response Relationship, Drug ; Electrophoresis, Polyacrylamide Gel ; Enzymatic activity ; Glutathione Transferase - metabolism ; HeLa Cells ; Humans ; Models, Biological ; Mutagenesis, Site-Directed ; Mutation ; Protein Binding ; Protein Biosynthesis ; Protein Structure, Tertiary ; Time Factors ; Transcription, Genetic ; Transfection ; Two-Hybrid System Techniques ; X-ray Repair Cross Complementing Protein 1 ; XRCC1 ; XRCC1 protein</subject><ispartof>The EMBO journal, 2001-11, Vol.20 (22), p.6530-6539</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Nov 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6672-2be38620333207145b6bca30ebcdf9af24c11191278e7c1ea6a7084d33c7be6e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125722/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125722/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11707423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidal, Antonio E.</creatorcontrib><creatorcontrib>Boiteux, Serge</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><creatorcontrib>Radicella, J. Pablo</creatorcontrib><title>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.</description><subject>abasic sites</subject><subject>Amino acids</subject><subject>Animals</subject><subject>AP endonuclease</subject><subject>APE1</subject><subject>APE1 protein</subject><subject>base excision repair</subject><subject>Binding Sites</subject><subject>Blotting, Western</subject><subject>Carbon-Oxygen Lyases - metabolism</subject><subject>Catalysis</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Deoxyribonuclease IV (Phage T4-Induced)</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA Damage</subject><subject>DNA Primers - chemistry</subject><subject>DNA Repair</subject><subject>DNA, Complementary - metabolism</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Enzymatic activity</subject><subject>Glutathione Transferase - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure, Tertiary</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Two-Hybrid System Techniques</subject><subject>X-ray Repair Cross Complementing Protein 1</subject><subject>XRCC1</subject><subject>XRCC1 protein</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFksFv0zAUxiMEYmVw5wKyOHBL52cndnLgMLoxQGWICQQ3y3FeW5fULnYC7L_HJVU3kBAnS_6-3_P79DnLHgOdAq35CW4avz5hdMrYVJSc3skmUAiaMyrLu9mEMgF5AVV9lD2IcU0pLSsJ97MjAEllwfgk675czWZAjPehtU73GEm_QmKd7a3uiHYt6dItib1eJs0vyNnlKdGNjtaQaJMScKttSFTww3JFtsH3aF2-P9OkHoM2vfUuPszuLXQX8dH-PM4-vTr_OHudz99fvJmdznMjhGQ5a5BXglHOeQoCRdmIxmhOsTHtotYLVhgAqIHJCqUB1EJLWhUt50Y2KJAfZy_Guduh2WBr0PVBd2ob7EaHa-W1VX8qzq7U0n9XwErJWOKf7_ngvw0Ye7Wx0WDXaYd-iAoq4JSyMhmf_WVc-yG4lE1BXbKyFgKSiY4mE3yMAReHRYCqXY3qd42KUcWY2tWYkKe3A9wA-96SoR4NP2yH1_8dqM7fvXwry7qAYpcORjYmzC0x3Fr63ws9GZn0RYaAhwdvZuajbmOPPw-yDl-VkFyW6vPlhWIfrgo6L85UzX8B_-7VZA</recordid><startdate>20011115</startdate><enddate>20011115</enddate><creator>Vidal, Antonio E.</creator><creator>Boiteux, Serge</creator><creator>Hickson, Ian D.</creator><creator>Radicella, J. Pablo</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20011115</creationdate><title>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</title><author>Vidal, Antonio E. ; Boiteux, Serge ; Hickson, Ian D. ; Radicella, J. Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6672-2be38620333207145b6bca30ebcdf9af24c11191278e7c1ea6a7084d33c7be6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>abasic sites</topic><topic>Amino acids</topic><topic>Animals</topic><topic>AP endonuclease</topic><topic>APE1</topic><topic>APE1 protein</topic><topic>base excision repair</topic><topic>Binding Sites</topic><topic>Blotting, Western</topic><topic>Carbon-Oxygen Lyases - metabolism</topic><topic>Catalysis</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Deoxyribonuclease IV (Phage T4-Induced)</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA Damage</topic><topic>DNA Primers - chemistry</topic><topic>DNA Repair</topic><topic>DNA, Complementary - metabolism</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Enzymatic activity</topic><topic>Glutathione Transferase - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure, Tertiary</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Two-Hybrid System Techniques</topic><topic>X-ray Repair Cross Complementing Protein 1</topic><topic>XRCC1</topic><topic>XRCC1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal, Antonio E.</creatorcontrib><creatorcontrib>Boiteux, Serge</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><creatorcontrib>Radicella, J. Pablo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal, Antonio E.</au><au>Boiteux, Serge</au><au>Hickson, Ian D.</au><au>Radicella, J. Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-11-15</date><risdate>2001</risdate><volume>20</volume><issue>22</issue><spage>6530</spage><epage>6539</epage><pages>6530-6539</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11707423</pmid><doi>10.1093/emboj/20.22.6530</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-11, Vol.20 (22), p.6530-6539
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125722
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects abasic sites
Amino acids
Animals
AP endonuclease
APE1
APE1 protein
base excision repair
Binding Sites
Blotting, Western
Carbon-Oxygen Lyases - metabolism
Catalysis
CHO Cells
Cricetinae
Deoxyribonuclease IV (Phage T4-Induced)
Deoxyribonucleic acid
DNA
DNA - metabolism
DNA Damage
DNA Primers - chemistry
DNA Repair
DNA, Complementary - metabolism
DNA-(Apurinic or Apyrimidinic Site) Lyase
DNA-Binding Proteins - metabolism
Dose-Response Relationship, Drug
Electrophoresis, Polyacrylamide Gel
Enzymatic activity
Glutathione Transferase - metabolism
HeLa Cells
Humans
Models, Biological
Mutagenesis, Site-Directed
Mutation
Protein Binding
Protein Biosynthesis
Protein Structure, Tertiary
Time Factors
Transcription, Genetic
Transfection
Two-Hybrid System Techniques
X-ray Repair Cross Complementing Protein 1
XRCC1
XRCC1 protein
title XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XRCC1%20coordinates%20the%20initial%20and%20late%20stages%20of%20DNA%20abasic%20site%20repair%20through%20protein-protein%20interactions&rft.jtitle=The%20EMBO%20journal&rft.au=Vidal,%20Antonio%20E.&rft.date=2001-11-15&rft.volume=20&rft.issue=22&rft.spage=6530&rft.epage=6539&rft.pages=6530-6539&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.22.6530&rft_dat=%3Cproquest_pubme%3E18130025%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259661&rft_id=info:pmid/11707423&rfr_iscdi=true