XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions
The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We r...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2001-11, Vol.20 (22), p.6530-6539 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6539 |
---|---|
container_issue | 22 |
container_start_page | 6530 |
container_title | The EMBO journal |
container_volume | 20 |
creator | Vidal, Antonio E. Boiteux, Serge Hickson, Ian D. Radicella, J. Pablo |
description | The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites. |
doi_str_mv | 10.1093/emboj/20.22.6530 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18130025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6672-2be38620333207145b6bca30ebcdf9af24c11191278e7c1ea6a7084d33c7be6e3</originalsourceid><addsrcrecordid>eNqFksFv0zAUxiMEYmVw5wKyOHBL52cndnLgMLoxQGWICQQ3y3FeW5fULnYC7L_HJVU3kBAnS_6-3_P79DnLHgOdAq35CW4avz5hdMrYVJSc3skmUAiaMyrLu9mEMgF5AVV9lD2IcU0pLSsJ97MjAEllwfgk675czWZAjPehtU73GEm_QmKd7a3uiHYt6dItib1eJs0vyNnlKdGNjtaQaJMScKttSFTww3JFtsH3aF2-P9OkHoM2vfUuPszuLXQX8dH-PM4-vTr_OHudz99fvJmdznMjhGQ5a5BXglHOeQoCRdmIxmhOsTHtotYLVhgAqIHJCqUB1EJLWhUt50Y2KJAfZy_Guduh2WBr0PVBd2ob7EaHa-W1VX8qzq7U0n9XwErJWOKf7_ngvw0Ye7Wx0WDXaYd-iAoq4JSyMhmf_WVc-yG4lE1BXbKyFgKSiY4mE3yMAReHRYCqXY3qd42KUcWY2tWYkKe3A9wA-96SoR4NP2yH1_8dqM7fvXwry7qAYpcORjYmzC0x3Fr63ws9GZn0RYaAhwdvZuajbmOPPw-yDl-VkFyW6vPlhWIfrgo6L85UzX8B_-7VZA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259661</pqid></control><display><type>article</type><title>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vidal, Antonio E. ; Boiteux, Serge ; Hickson, Ian D. ; Radicella, J. Pablo</creator><creatorcontrib>Vidal, Antonio E. ; Boiteux, Serge ; Hickson, Ian D. ; Radicella, J. Pablo</creatorcontrib><description>The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.22.6530</identifier><identifier>PMID: 11707423</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>abasic sites ; Amino acids ; Animals ; AP endonuclease ; APE1 ; APE1 protein ; base excision repair ; Binding Sites ; Blotting, Western ; Carbon-Oxygen Lyases - metabolism ; Catalysis ; CHO Cells ; Cricetinae ; Deoxyribonuclease IV (Phage T4-Induced) ; Deoxyribonucleic acid ; DNA ; DNA - metabolism ; DNA Damage ; DNA Primers - chemistry ; DNA Repair ; DNA, Complementary - metabolism ; DNA-(Apurinic or Apyrimidinic Site) Lyase ; DNA-Binding Proteins - metabolism ; Dose-Response Relationship, Drug ; Electrophoresis, Polyacrylamide Gel ; Enzymatic activity ; Glutathione Transferase - metabolism ; HeLa Cells ; Humans ; Models, Biological ; Mutagenesis, Site-Directed ; Mutation ; Protein Binding ; Protein Biosynthesis ; Protein Structure, Tertiary ; Time Factors ; Transcription, Genetic ; Transfection ; Two-Hybrid System Techniques ; X-ray Repair Cross Complementing Protein 1 ; XRCC1 ; XRCC1 protein</subject><ispartof>The EMBO journal, 2001-11, Vol.20 (22), p.6530-6539</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Nov 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6672-2be38620333207145b6bca30ebcdf9af24c11191278e7c1ea6a7084d33c7be6e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125722/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125722/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1416,1432,27922,27923,45572,45573,46407,46831,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11707423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidal, Antonio E.</creatorcontrib><creatorcontrib>Boiteux, Serge</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><creatorcontrib>Radicella, J. Pablo</creatorcontrib><title>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.</description><subject>abasic sites</subject><subject>Amino acids</subject><subject>Animals</subject><subject>AP endonuclease</subject><subject>APE1</subject><subject>APE1 protein</subject><subject>base excision repair</subject><subject>Binding Sites</subject><subject>Blotting, Western</subject><subject>Carbon-Oxygen Lyases - metabolism</subject><subject>Catalysis</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Deoxyribonuclease IV (Phage T4-Induced)</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - metabolism</subject><subject>DNA Damage</subject><subject>DNA Primers - chemistry</subject><subject>DNA Repair</subject><subject>DNA, Complementary - metabolism</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Enzymatic activity</subject><subject>Glutathione Transferase - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure, Tertiary</subject><subject>Time Factors</subject><subject>Transcription, Genetic</subject><subject>Transfection</subject><subject>Two-Hybrid System Techniques</subject><subject>X-ray Repair Cross Complementing Protein 1</subject><subject>XRCC1</subject><subject>XRCC1 protein</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFksFv0zAUxiMEYmVw5wKyOHBL52cndnLgMLoxQGWICQQ3y3FeW5fULnYC7L_HJVU3kBAnS_6-3_P79DnLHgOdAq35CW4avz5hdMrYVJSc3skmUAiaMyrLu9mEMgF5AVV9lD2IcU0pLSsJ97MjAEllwfgk675czWZAjPehtU73GEm_QmKd7a3uiHYt6dItib1eJs0vyNnlKdGNjtaQaJMScKttSFTww3JFtsH3aF2-P9OkHoM2vfUuPszuLXQX8dH-PM4-vTr_OHudz99fvJmdznMjhGQ5a5BXglHOeQoCRdmIxmhOsTHtotYLVhgAqIHJCqUB1EJLWhUt50Y2KJAfZy_Guduh2WBr0PVBd2ob7EaHa-W1VX8qzq7U0n9XwErJWOKf7_ngvw0Ye7Wx0WDXaYd-iAoq4JSyMhmf_WVc-yG4lE1BXbKyFgKSiY4mE3yMAReHRYCqXY3qd42KUcWY2tWYkKe3A9wA-96SoR4NP2yH1_8dqM7fvXwry7qAYpcORjYmzC0x3Fr63ws9GZn0RYaAhwdvZuajbmOPPw-yDl-VkFyW6vPlhWIfrgo6L85UzX8B_-7VZA</recordid><startdate>20011115</startdate><enddate>20011115</enddate><creator>Vidal, Antonio E.</creator><creator>Boiteux, Serge</creator><creator>Hickson, Ian D.</creator><creator>Radicella, J. Pablo</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20011115</creationdate><title>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</title><author>Vidal, Antonio E. ; Boiteux, Serge ; Hickson, Ian D. ; Radicella, J. Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6672-2be38620333207145b6bca30ebcdf9af24c11191278e7c1ea6a7084d33c7be6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>abasic sites</topic><topic>Amino acids</topic><topic>Animals</topic><topic>AP endonuclease</topic><topic>APE1</topic><topic>APE1 protein</topic><topic>base excision repair</topic><topic>Binding Sites</topic><topic>Blotting, Western</topic><topic>Carbon-Oxygen Lyases - metabolism</topic><topic>Catalysis</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Deoxyribonuclease IV (Phage T4-Induced)</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - metabolism</topic><topic>DNA Damage</topic><topic>DNA Primers - chemistry</topic><topic>DNA Repair</topic><topic>DNA, Complementary - metabolism</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Enzymatic activity</topic><topic>Glutathione Transferase - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure, Tertiary</topic><topic>Time Factors</topic><topic>Transcription, Genetic</topic><topic>Transfection</topic><topic>Two-Hybrid System Techniques</topic><topic>X-ray Repair Cross Complementing Protein 1</topic><topic>XRCC1</topic><topic>XRCC1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal, Antonio E.</creatorcontrib><creatorcontrib>Boiteux, Serge</creatorcontrib><creatorcontrib>Hickson, Ian D.</creatorcontrib><creatorcontrib>Radicella, J. Pablo</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal, Antonio E.</au><au>Boiteux, Serge</au><au>Hickson, Ian D.</au><au>Radicella, J. Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-11-15</date><risdate>2001</risdate><volume>20</volume><issue>22</issue><spage>6530</spage><epage>6539</epage><pages>6530-6539</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>11707423</pmid><doi>10.1093/emboj/20.22.6530</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2001-11, Vol.20 (22), p.6530-6539 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125722 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | abasic sites Amino acids Animals AP endonuclease APE1 APE1 protein base excision repair Binding Sites Blotting, Western Carbon-Oxygen Lyases - metabolism Catalysis CHO Cells Cricetinae Deoxyribonuclease IV (Phage T4-Induced) Deoxyribonucleic acid DNA DNA - metabolism DNA Damage DNA Primers - chemistry DNA Repair DNA, Complementary - metabolism DNA-(Apurinic or Apyrimidinic Site) Lyase DNA-Binding Proteins - metabolism Dose-Response Relationship, Drug Electrophoresis, Polyacrylamide Gel Enzymatic activity Glutathione Transferase - metabolism HeLa Cells Humans Models, Biological Mutagenesis, Site-Directed Mutation Protein Binding Protein Biosynthesis Protein Structure, Tertiary Time Factors Transcription, Genetic Transfection Two-Hybrid System Techniques X-ray Repair Cross Complementing Protein 1 XRCC1 XRCC1 protein |
title | XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T16%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=XRCC1%20coordinates%20the%20initial%20and%20late%20stages%20of%20DNA%20abasic%20site%20repair%20through%20protein-protein%20interactions&rft.jtitle=The%20EMBO%20journal&rft.au=Vidal,%20Antonio%20E.&rft.date=2001-11-15&rft.volume=20&rft.issue=22&rft.spage=6530&rft.epage=6539&rft.pages=6530-6539&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.22.6530&rft_dat=%3Cproquest_pubme%3E18130025%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259661&rft_id=info:pmid/11707423&rfr_iscdi=true |