Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration

Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T‐DNA also to monocotyledonous plants,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2001-11, Vol.20 (22), p.6550-6558
Hauptverfasser: van Attikum, Haico, Bundock, Paul, Hooykaas, Paul J. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6558
container_issue 22
container_start_page 6550
container_title The EMBO journal
container_volume 20
creator van Attikum, Haico
Bundock, Paul
Hooykaas, Paul J. J.
description Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the rad50 , mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.
doi_str_mv 10.1093/emboj/20.22.6550
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18194848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5524-a4e715718cf75ad8861448879d2423e880c46a621a2d45fd83dbd3fe7eed0d263</originalsourceid><addsrcrecordid>eNqFkUtz0zAUhTUMDA2FPSvGK3ZKJVmy5AWLEPqAScOCMF1qFOvaVbClVLKB_nscnCmwoau7uOc793EQek3JnJIyP4NuG3ZnjMwZmxdCkCdoRnlBMCNSPEUzwgqKOVXlCXqR0o4QIpSkz9EJpZJIzsQMbdbB49vQhTY0YUgZeIt3wXnnm2wfQw_Op8xEyCLcDS6CzeoQs0UTw9ZUPUQ3dNkGf1gvMud7aKLpXfAv0bPatAleHesp-npxvlle4dXny4_LxQpXQjCODQdJhaSqqqUwVqmCcq6ULC3jLAelSMULUzBqmOWitiq3W5vXIAEssazIT9G7yXc_bDuwFfg-mlbvo-tMvNfBOP1vx7tb3YTvmrLD2JF_e-RjuBsg9bpzqYK2NR7GZ2jJmBS8pI8KqaIlV_zgSCZhFUNKEeqHZSjRh8j078g0I5oxfYhsRN78fcQf4JjRKCgnwQ_Xwv2jhvr8-v0nKUo-PnNk6cSmEfMNRL0LQ_RjKP9bCE-MSz38fJhn4jddyFwKfbO-1Ksbev1lWVzpi_wXcbXFjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18194848</pqid></control><display><type>article</type><title>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>van Attikum, Haico ; Bundock, Paul ; Hooykaas, Paul J. J.</creator><creatorcontrib>van Attikum, Haico ; Bundock, Paul ; Hooykaas, Paul J. J.</creatorcontrib><description>Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the rad50 , mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.22.6550</identifier><identifier>PMID: 11707425</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Agrobacterium ; Agrobacterium tumefaciens ; Agrobacterium tumefaciens - genetics ; Antigens, Nuclear ; Base Sequence ; Chromosome Aberrations ; DNA Helicases ; DNA Ligase ATP ; DNA Ligases - physiology ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - physiology ; DNA-Directed DNA Polymerase - metabolism ; Electrophoresis, Polyacrylamide Gel ; Endodeoxyribonucleases - physiology ; Exodeoxyribonucleases - physiology ; Fungal Proteins - physiology ; Genetic Vectors ; genomic instability ; Genotype ; Ku Autoantigen ; Lig4 protein ; Models, Genetic ; Molecular Sequence Data ; mre11 gene ; Mre11 protein ; Mutation ; non-homologous end-joining ; Nuclear Proteins - physiology ; Polymerase Chain Reaction ; Protein Binding ; rad50 gene ; Rad50 protein ; Recombination, Genetic ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Sir4 protein ; T-DNA integration ; Telomere - metabolism ; telomeres ; xrs2 gene ; Xrs2 protein ; Yku70 protein</subject><ispartof>The EMBO journal, 2001-11, Vol.20 (22), p.6550-6558</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5524-a4e715718cf75ad8861448879d2423e880c46a621a2d45fd83dbd3fe7eed0d263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125718/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125718/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11707425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Attikum, Haico</creatorcontrib><creatorcontrib>Bundock, Paul</creatorcontrib><creatorcontrib>Hooykaas, Paul J. J.</creatorcontrib><title>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the rad50 , mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.</description><subject>Agrobacterium</subject><subject>Agrobacterium tumefaciens</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Antigens, Nuclear</subject><subject>Base Sequence</subject><subject>Chromosome Aberrations</subject><subject>DNA Helicases</subject><subject>DNA Ligase ATP</subject><subject>DNA Ligases - physiology</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Endodeoxyribonucleases - physiology</subject><subject>Exodeoxyribonucleases - physiology</subject><subject>Fungal Proteins - physiology</subject><subject>Genetic Vectors</subject><subject>genomic instability</subject><subject>Genotype</subject><subject>Ku Autoantigen</subject><subject>Lig4 protein</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>mre11 gene</subject><subject>Mre11 protein</subject><subject>Mutation</subject><subject>non-homologous end-joining</subject><subject>Nuclear Proteins - physiology</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Binding</subject><subject>rad50 gene</subject><subject>Rad50 protein</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae</subject><subject>Sir4 protein</subject><subject>T-DNA integration</subject><subject>Telomere - metabolism</subject><subject>telomeres</subject><subject>xrs2 gene</subject><subject>Xrs2 protein</subject><subject>Yku70 protein</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtz0zAUhTUMDA2FPSvGK3ZKJVmy5AWLEPqAScOCMF1qFOvaVbClVLKB_nscnCmwoau7uOc793EQek3JnJIyP4NuG3ZnjMwZmxdCkCdoRnlBMCNSPEUzwgqKOVXlCXqR0o4QIpSkz9EJpZJIzsQMbdbB49vQhTY0YUgZeIt3wXnnm2wfQw_Op8xEyCLcDS6CzeoQs0UTw9ZUPUQ3dNkGf1gvMud7aKLpXfAv0bPatAleHesp-npxvlle4dXny4_LxQpXQjCODQdJhaSqqqUwVqmCcq6ULC3jLAelSMULUzBqmOWitiq3W5vXIAEssazIT9G7yXc_bDuwFfg-mlbvo-tMvNfBOP1vx7tb3YTvmrLD2JF_e-RjuBsg9bpzqYK2NR7GZ2jJmBS8pI8KqaIlV_zgSCZhFUNKEeqHZSjRh8j078g0I5oxfYhsRN78fcQf4JjRKCgnwQ_Xwv2jhvr8-v0nKUo-PnNk6cSmEfMNRL0LQ_RjKP9bCE-MSz38fJhn4jddyFwKfbO-1Ksbev1lWVzpi_wXcbXFjw</recordid><startdate>20011115</startdate><enddate>20011115</enddate><creator>van Attikum, Haico</creator><creator>Bundock, Paul</creator><creator>Hooykaas, Paul J. J.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011115</creationdate><title>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</title><author>van Attikum, Haico ; Bundock, Paul ; Hooykaas, Paul J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5524-a4e715718cf75ad8861448879d2423e880c46a621a2d45fd83dbd3fe7eed0d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Agrobacterium</topic><topic>Agrobacterium tumefaciens</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Antigens, Nuclear</topic><topic>Base Sequence</topic><topic>Chromosome Aberrations</topic><topic>DNA Helicases</topic><topic>DNA Ligase ATP</topic><topic>DNA Ligases - physiology</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Endodeoxyribonucleases - physiology</topic><topic>Exodeoxyribonucleases - physiology</topic><topic>Fungal Proteins - physiology</topic><topic>Genetic Vectors</topic><topic>genomic instability</topic><topic>Genotype</topic><topic>Ku Autoantigen</topic><topic>Lig4 protein</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>mre11 gene</topic><topic>Mre11 protein</topic><topic>Mutation</topic><topic>non-homologous end-joining</topic><topic>Nuclear Proteins - physiology</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Binding</topic><topic>rad50 gene</topic><topic>Rad50 protein</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae</topic><topic>Sir4 protein</topic><topic>T-DNA integration</topic><topic>Telomere - metabolism</topic><topic>telomeres</topic><topic>xrs2 gene</topic><topic>Xrs2 protein</topic><topic>Yku70 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Attikum, Haico</creatorcontrib><creatorcontrib>Bundock, Paul</creatorcontrib><creatorcontrib>Hooykaas, Paul J. J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Attikum, Haico</au><au>Bundock, Paul</au><au>Hooykaas, Paul J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-11-15</date><risdate>2001</risdate><volume>20</volume><issue>22</issue><spage>6550</spage><epage>6558</epage><pages>6550-6558</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast Saccharomyces cerevisiae as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the rad50 , mre11 and xrs2 mutants was accompanied by gross chromosomal rearrangements.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11707425</pmid><doi>10.1093/emboj/20.22.6550</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-11, Vol.20 (22), p.6550-6558
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125718
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agrobacterium
Agrobacterium tumefaciens
Agrobacterium tumefaciens - genetics
Antigens, Nuclear
Base Sequence
Chromosome Aberrations
DNA Helicases
DNA Ligase ATP
DNA Ligases - physiology
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA-Binding Proteins - physiology
DNA-Directed DNA Polymerase - metabolism
Electrophoresis, Polyacrylamide Gel
Endodeoxyribonucleases - physiology
Exodeoxyribonucleases - physiology
Fungal Proteins - physiology
Genetic Vectors
genomic instability
Genotype
Ku Autoantigen
Lig4 protein
Models, Genetic
Molecular Sequence Data
mre11 gene
Mre11 protein
Mutation
non-homologous end-joining
Nuclear Proteins - physiology
Polymerase Chain Reaction
Protein Binding
rad50 gene
Rad50 protein
Recombination, Genetic
Saccharomyces cerevisiae
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
Silent Information Regulator Proteins, Saccharomyces cerevisiae
Sir4 protein
T-DNA integration
Telomere - metabolism
telomeres
xrs2 gene
Xrs2 protein
Yku70 protein
title Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-homologous%20end-joining%20proteins%20are%20required%20for%20Agrobacterium%20T-DNA%20integration&rft.jtitle=The%20EMBO%20journal&rft.au=van%20Attikum,%20Haico&rft.date=2001-11-15&rft.volume=20&rft.issue=22&rft.spage=6550&rft.epage=6558&rft.pages=6550-6558&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.1093/emboj/20.22.6550&rft_dat=%3Cproquest_pubme%3E18194848%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18194848&rft_id=info:pmid/11707425&rfr_iscdi=true