Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration
Agrobacterium tumefaciens causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts, Agrobacterium can deliver the T‐DNA also to monocotyledonous plants,...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2001-11, Vol.20 (22), p.6550-6558 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6558 |
---|---|
container_issue | 22 |
container_start_page | 6550 |
container_title | The EMBO journal |
container_volume | 20 |
creator | van Attikum, Haico Bundock, Paul Hooykaas, Paul J. J. |
description | Agrobacterium tumefaciens
causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts,
Agrobacterium
can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast
Saccharomyces cerevisiae
as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the
rad50
,
mre11
and
xrs2
mutants was accompanied by gross chromosomal rearrangements. |
doi_str_mv | 10.1093/emboj/20.22.6550 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18194848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5524-a4e715718cf75ad8861448879d2423e880c46a621a2d45fd83dbd3fe7eed0d263</originalsourceid><addsrcrecordid>eNqFkUtz0zAUhTUMDA2FPSvGK3ZKJVmy5AWLEPqAScOCMF1qFOvaVbClVLKB_nscnCmwoau7uOc793EQek3JnJIyP4NuG3ZnjMwZmxdCkCdoRnlBMCNSPEUzwgqKOVXlCXqR0o4QIpSkz9EJpZJIzsQMbdbB49vQhTY0YUgZeIt3wXnnm2wfQw_Op8xEyCLcDS6CzeoQs0UTw9ZUPUQ3dNkGf1gvMud7aKLpXfAv0bPatAleHesp-npxvlle4dXny4_LxQpXQjCODQdJhaSqqqUwVqmCcq6ULC3jLAelSMULUzBqmOWitiq3W5vXIAEssazIT9G7yXc_bDuwFfg-mlbvo-tMvNfBOP1vx7tb3YTvmrLD2JF_e-RjuBsg9bpzqYK2NR7GZ2jJmBS8pI8KqaIlV_zgSCZhFUNKEeqHZSjRh8j078g0I5oxfYhsRN78fcQf4JjRKCgnwQ_Xwv2jhvr8-v0nKUo-PnNk6cSmEfMNRL0LQ_RjKP9bCE-MSz38fJhn4jddyFwKfbO-1Ksbev1lWVzpi_wXcbXFjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18194848</pqid></control><display><type>article</type><title>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>van Attikum, Haico ; Bundock, Paul ; Hooykaas, Paul J. J.</creator><creatorcontrib>van Attikum, Haico ; Bundock, Paul ; Hooykaas, Paul J. J.</creatorcontrib><description>Agrobacterium tumefaciens
causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts,
Agrobacterium
can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast
Saccharomyces cerevisiae
as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the
rad50
,
mre11
and
xrs2
mutants was accompanied by gross chromosomal rearrangements.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.22.6550</identifier><identifier>PMID: 11707425</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agrobacterium ; Agrobacterium tumefaciens ; Agrobacterium tumefaciens - genetics ; Antigens, Nuclear ; Base Sequence ; Chromosome Aberrations ; DNA Helicases ; DNA Ligase ATP ; DNA Ligases - physiology ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-Binding Proteins - physiology ; DNA-Directed DNA Polymerase - metabolism ; Electrophoresis, Polyacrylamide Gel ; Endodeoxyribonucleases - physiology ; Exodeoxyribonucleases - physiology ; Fungal Proteins - physiology ; Genetic Vectors ; genomic instability ; Genotype ; Ku Autoantigen ; Lig4 protein ; Models, Genetic ; Molecular Sequence Data ; mre11 gene ; Mre11 protein ; Mutation ; non-homologous end-joining ; Nuclear Proteins - physiology ; Polymerase Chain Reaction ; Protein Binding ; rad50 gene ; Rad50 protein ; Recombination, Genetic ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Sir4 protein ; T-DNA integration ; Telomere - metabolism ; telomeres ; xrs2 gene ; Xrs2 protein ; Yku70 protein</subject><ispartof>The EMBO journal, 2001-11, Vol.20 (22), p.6550-6558</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5524-a4e715718cf75ad8861448879d2423e880c46a621a2d45fd83dbd3fe7eed0d263</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125718/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125718/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11707425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>van Attikum, Haico</creatorcontrib><creatorcontrib>Bundock, Paul</creatorcontrib><creatorcontrib>Hooykaas, Paul J. J.</creatorcontrib><title>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Agrobacterium tumefaciens
causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts,
Agrobacterium
can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast
Saccharomyces cerevisiae
as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the
rad50
,
mre11
and
xrs2
mutants was accompanied by gross chromosomal rearrangements.</description><subject>Agrobacterium</subject><subject>Agrobacterium tumefaciens</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Antigens, Nuclear</subject><subject>Base Sequence</subject><subject>Chromosome Aberrations</subject><subject>DNA Helicases</subject><subject>DNA Ligase ATP</subject><subject>DNA Ligases - physiology</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-Binding Proteins - physiology</subject><subject>DNA-Directed DNA Polymerase - metabolism</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Endodeoxyribonucleases - physiology</subject><subject>Exodeoxyribonucleases - physiology</subject><subject>Fungal Proteins - physiology</subject><subject>Genetic Vectors</subject><subject>genomic instability</subject><subject>Genotype</subject><subject>Ku Autoantigen</subject><subject>Lig4 protein</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>mre11 gene</subject><subject>Mre11 protein</subject><subject>Mutation</subject><subject>non-homologous end-joining</subject><subject>Nuclear Proteins - physiology</subject><subject>Polymerase Chain Reaction</subject><subject>Protein Binding</subject><subject>rad50 gene</subject><subject>Rad50 protein</subject><subject>Recombination, Genetic</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae</subject><subject>Sir4 protein</subject><subject>T-DNA integration</subject><subject>Telomere - metabolism</subject><subject>telomeres</subject><subject>xrs2 gene</subject><subject>Xrs2 protein</subject><subject>Yku70 protein</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtz0zAUhTUMDA2FPSvGK3ZKJVmy5AWLEPqAScOCMF1qFOvaVbClVLKB_nscnCmwoau7uOc793EQek3JnJIyP4NuG3ZnjMwZmxdCkCdoRnlBMCNSPEUzwgqKOVXlCXqR0o4QIpSkz9EJpZJIzsQMbdbB49vQhTY0YUgZeIt3wXnnm2wfQw_Op8xEyCLcDS6CzeoQs0UTw9ZUPUQ3dNkGf1gvMud7aKLpXfAv0bPatAleHesp-npxvlle4dXny4_LxQpXQjCODQdJhaSqqqUwVqmCcq6ULC3jLAelSMULUzBqmOWitiq3W5vXIAEssazIT9G7yXc_bDuwFfg-mlbvo-tMvNfBOP1vx7tb3YTvmrLD2JF_e-RjuBsg9bpzqYK2NR7GZ2jJmBS8pI8KqaIlV_zgSCZhFUNKEeqHZSjRh8j078g0I5oxfYhsRN78fcQf4JjRKCgnwQ_Xwv2jhvr8-v0nKUo-PnNk6cSmEfMNRL0LQ_RjKP9bCE-MSz38fJhn4jddyFwKfbO-1Ksbev1lWVzpi_wXcbXFjw</recordid><startdate>20011115</startdate><enddate>20011115</enddate><creator>van Attikum, Haico</creator><creator>Bundock, Paul</creator><creator>Hooykaas, Paul J. J.</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011115</creationdate><title>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</title><author>van Attikum, Haico ; Bundock, Paul ; Hooykaas, Paul J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5524-a4e715718cf75ad8861448879d2423e880c46a621a2d45fd83dbd3fe7eed0d263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Agrobacterium</topic><topic>Agrobacterium tumefaciens</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Antigens, Nuclear</topic><topic>Base Sequence</topic><topic>Chromosome Aberrations</topic><topic>DNA Helicases</topic><topic>DNA Ligase ATP</topic><topic>DNA Ligases - physiology</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-Binding Proteins - physiology</topic><topic>DNA-Directed DNA Polymerase - metabolism</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Endodeoxyribonucleases - physiology</topic><topic>Exodeoxyribonucleases - physiology</topic><topic>Fungal Proteins - physiology</topic><topic>Genetic Vectors</topic><topic>genomic instability</topic><topic>Genotype</topic><topic>Ku Autoantigen</topic><topic>Lig4 protein</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>mre11 gene</topic><topic>Mre11 protein</topic><topic>Mutation</topic><topic>non-homologous end-joining</topic><topic>Nuclear Proteins - physiology</topic><topic>Polymerase Chain Reaction</topic><topic>Protein Binding</topic><topic>rad50 gene</topic><topic>Rad50 protein</topic><topic>Recombination, Genetic</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae</topic><topic>Sir4 protein</topic><topic>T-DNA integration</topic><topic>Telomere - metabolism</topic><topic>telomeres</topic><topic>xrs2 gene</topic><topic>Xrs2 protein</topic><topic>Yku70 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Attikum, Haico</creatorcontrib><creatorcontrib>Bundock, Paul</creatorcontrib><creatorcontrib>Hooykaas, Paul J. J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Attikum, Haico</au><au>Bundock, Paul</au><au>Hooykaas, Paul J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-11-15</date><risdate>2001</risdate><volume>20</volume><issue>22</issue><spage>6550</spage><epage>6558</epage><pages>6550-6558</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>Agrobacterium tumefaciens
causes crown gall disease in dicotyledonous plants by introducing a segment of DNA (T‐DNA), derived from its tumour‐inducing (Ti) plasmid, into plant cells at infection sites. Besides these natural hosts,
Agrobacterium
can deliver the T‐DNA also to monocotyledonous plants, yeasts and fungi. The T‐DNA integrates randomly into one of the chromosomes of the eukaryotic host by an unknown process. Here, we have used the yeast
Saccharomyces cerevisiae
as a T‐DNA recipient to demonstrate that the non‐homologous end‐joining (NHEJ) proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4 are required for the integration of T‐DNA into the host genome. We discovered a minor pathway for T‐DNA integration at the telomeric regions, which is still operational in the absence of Rad50, Mre11 or Xrs2, but not in the absence of Yku70. T‐DNA integration at the telomeric regions in the
rad50
,
mre11
and
xrs2
mutants was accompanied by gross chromosomal rearrangements.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>11707425</pmid><doi>10.1093/emboj/20.22.6550</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2001-11, Vol.20 (22), p.6550-6558 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125718 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agrobacterium Agrobacterium tumefaciens Agrobacterium tumefaciens - genetics Antigens, Nuclear Base Sequence Chromosome Aberrations DNA Helicases DNA Ligase ATP DNA Ligases - physiology DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-Binding Proteins - physiology DNA-Directed DNA Polymerase - metabolism Electrophoresis, Polyacrylamide Gel Endodeoxyribonucleases - physiology Exodeoxyribonucleases - physiology Fungal Proteins - physiology Genetic Vectors genomic instability Genotype Ku Autoantigen Lig4 protein Models, Genetic Molecular Sequence Data mre11 gene Mre11 protein Mutation non-homologous end-joining Nuclear Proteins - physiology Polymerase Chain Reaction Protein Binding rad50 gene Rad50 protein Recombination, Genetic Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins Silent Information Regulator Proteins, Saccharomyces cerevisiae Sir4 protein T-DNA integration Telomere - metabolism telomeres xrs2 gene Xrs2 protein Yku70 protein |
title | Non-homologous end-joining proteins are required for Agrobacterium T-DNA integration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A06%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-homologous%20end-joining%20proteins%20are%20required%20for%20Agrobacterium%20T-DNA%20integration&rft.jtitle=The%20EMBO%20journal&rft.au=van%20Attikum,%20Haico&rft.date=2001-11-15&rft.volume=20&rft.issue=22&rft.spage=6550&rft.epage=6558&rft.pages=6550-6558&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.1093/emboj/20.22.6550&rft_dat=%3Cproquest_pubme%3E18194848%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18194848&rft_id=info:pmid/11707425&rfr_iscdi=true |