Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination

Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13 ‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient cdc13‐1 cells accumulated DNA damage and eventually senesced. However, these te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2001-11, Vol.20 (21), p.6127-6139
Hauptverfasser: Grandin, Nathalie, Damon, Christelle, Charbonneau, Michel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6139
container_issue 21
container_start_page 6127
container_title The EMBO journal
container_volume 20
creator Grandin, Nathalie
Damon, Christelle
Charbonneau, Michel
description Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13 ‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient cdc13‐1 cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13‐1 mec3 , as well as in telomerase‐deficient cdc13‐1 cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG 1–3 repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.
doi_str_mv 10.1093/emboj/20.21.6127
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18121321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6134-792574ea84c69a06d8eb7d1479b5f5311c9dfa29f1cce65c606683e40e2ca2f43</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxSMEYmVw54QiDpM4pPPX8Y_4wGGrxgYqQ5pAQ1ws1_mmTUns4LSF_fc4pBpjEtopkvM-7_v0XpK8BDIFovJjbBd-fUzJlMJUAJWPkgkwQTJKJH-cTAgVkDEo1EHyrO_XhBBeSHiaHACIQjFOJ8nlrLSQp13AHbpNn26w8S0GTLfOmq6r3TI1rkyvTMlJVmKHroy6dOVb3_il3_ZpQOvbRe3MpvbuefKkMk2PL_bfw-TLu7PPs4ts_un8_exknlkBOcukolwyNAWzQhkiygIXsgQm1YJXPAewqqwMVRVYi4JbQYQocmQEqTW0Yvlh8nb07baLFksbMwXT6C7UrQk32pta__vH1Su99DsN8TCRkX8z8qt71MXJXA9vsSspBSU7iNqj_a3gf2yx3-i27i02jXEYC9CS0hiZ0QeFUACFnA6Or-8J134bXCxMg-JUcJkPbmQU2eD7PmB1mxOIHtbXf9bXlGgKelg_Iq_utvIX2M8dBWoU_KwbvHnQUJ99PP0guWJAhsphZPuIuSWGO6H_Hygbmbrf4K_beyZ810Lmkuvry3NN2enVV3b9Tav8N8KL3Ec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195265732</pqid></control><display><type>article</type><title>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Grandin, Nathalie ; Damon, Christelle ; Charbonneau, Michel</creator><creatorcontrib>Grandin, Nathalie ; Damon, Christelle ; Charbonneau, Michel</creatorcontrib><description>Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13 ‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient cdc13‐1 cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13‐1 mec3 , as well as in telomerase‐deficient cdc13‐1 cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG 1–3 repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.21.6127</identifier><identifier>PMID: 11689452</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Cdc13 protein ; Cell Cycle Proteins - metabolism ; Cell Survival - physiology ; Cellular Senescence - physiology ; Cyclin B - genetics ; Cyclin B - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Damage - physiology ; DNA damage checkpoints ; DNA-Binding Proteins - metabolism ; Fungal Proteins - metabolism ; Genes, cdc ; Life Sciences ; Mutation ; Rad50 and homologous recombination ; Rad50 protein ; Rad51 protein ; Rad51 Recombinase ; Rad52 DNA Repair and Recombination Protein ; Rad52 protein ; Recombination, Genetic - physiology ; S.cerevisiae Cdc13 ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; senescence ; Stn1 protein ; Telomerase - metabolism ; Telomere - genetics ; Telomere - metabolism ; telomere uncapping ; Telomere-Binding Proteins ; Temperature ; Ten1 protein ; Yeasts</subject><ispartof>The EMBO journal, 2001-11, Vol.20 (21), p.6127-6139</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Nov 01, 2001</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6134-792574ea84c69a06d8eb7d1479b5f5311c9dfa29f1cce65c606683e40e2ca2f43</citedby><orcidid>0000-0003-0393-2586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125707/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125707/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11689452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00077620$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grandin, Nathalie</creatorcontrib><creatorcontrib>Damon, Christelle</creatorcontrib><creatorcontrib>Charbonneau, Michel</creatorcontrib><title>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13 ‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient cdc13‐1 cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13‐1 mec3 , as well as in telomerase‐deficient cdc13‐1 cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG 1–3 repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.</description><subject>Cdc13 protein</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Survival - physiology</subject><subject>Cellular Senescence - physiology</subject><subject>Cyclin B - genetics</subject><subject>Cyclin B - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage - physiology</subject><subject>DNA damage checkpoints</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes, cdc</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Rad50 and homologous recombination</subject><subject>Rad50 protein</subject><subject>Rad51 protein</subject><subject>Rad51 Recombinase</subject><subject>Rad52 DNA Repair and Recombination Protein</subject><subject>Rad52 protein</subject><subject>Recombination, Genetic - physiology</subject><subject>S.cerevisiae Cdc13</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>senescence</subject><subject>Stn1 protein</subject><subject>Telomerase - metabolism</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>telomere uncapping</subject><subject>Telomere-Binding Proteins</subject><subject>Temperature</subject><subject>Ten1 protein</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9v0zAcxSMEYmVw54QiDpM4pPPX8Y_4wGGrxgYqQ5pAQ1ws1_mmTUns4LSF_fc4pBpjEtopkvM-7_v0XpK8BDIFovJjbBd-fUzJlMJUAJWPkgkwQTJKJH-cTAgVkDEo1EHyrO_XhBBeSHiaHACIQjFOJ8nlrLSQp13AHbpNn26w8S0GTLfOmq6r3TI1rkyvTMlJVmKHroy6dOVb3_il3_ZpQOvbRe3MpvbuefKkMk2PL_bfw-TLu7PPs4ts_un8_exknlkBOcukolwyNAWzQhkiygIXsgQm1YJXPAewqqwMVRVYi4JbQYQocmQEqTW0Yvlh8nb07baLFksbMwXT6C7UrQk32pta__vH1Su99DsN8TCRkX8z8qt71MXJXA9vsSspBSU7iNqj_a3gf2yx3-i27i02jXEYC9CS0hiZ0QeFUACFnA6Or-8J134bXCxMg-JUcJkPbmQU2eD7PmB1mxOIHtbXf9bXlGgKelg_Iq_utvIX2M8dBWoU_KwbvHnQUJ99PP0guWJAhsphZPuIuSWGO6H_Hygbmbrf4K_beyZ810Lmkuvry3NN2enVV3b9Tav8N8KL3Ec</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Grandin, Nathalie</creator><creator>Damon, Christelle</creator><creator>Charbonneau, Michel</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0393-2586</orcidid></search><sort><creationdate>20011101</creationdate><title>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</title><author>Grandin, Nathalie ; Damon, Christelle ; Charbonneau, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6134-792574ea84c69a06d8eb7d1479b5f5311c9dfa29f1cce65c606683e40e2ca2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cdc13 protein</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Survival - physiology</topic><topic>Cellular Senescence - physiology</topic><topic>Cyclin B - genetics</topic><topic>Cyclin B - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage - physiology</topic><topic>DNA damage checkpoints</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes, cdc</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Rad50 and homologous recombination</topic><topic>Rad50 protein</topic><topic>Rad51 protein</topic><topic>Rad51 Recombinase</topic><topic>Rad52 DNA Repair and Recombination Protein</topic><topic>Rad52 protein</topic><topic>Recombination, Genetic - physiology</topic><topic>S.cerevisiae Cdc13</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>senescence</topic><topic>Stn1 protein</topic><topic>Telomerase - metabolism</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>telomere uncapping</topic><topic>Telomere-Binding Proteins</topic><topic>Temperature</topic><topic>Ten1 protein</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grandin, Nathalie</creatorcontrib><creatorcontrib>Damon, Christelle</creatorcontrib><creatorcontrib>Charbonneau, Michel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grandin, Nathalie</au><au>Damon, Christelle</au><au>Charbonneau, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>20</volume><issue>21</issue><spage>6127</spage><epage>6139</epage><pages>6127-6139</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13 ‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient cdc13‐1 cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in cdc13‐1 mec3 , as well as in telomerase‐deficient cdc13‐1 cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG 1–3 repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11689452</pmid><doi>10.1093/emboj/20.21.6127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0393-2586</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-11, Vol.20 (21), p.6127-6139
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125707
source Wiley Free Content; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cdc13 protein
Cell Cycle Proteins - metabolism
Cell Survival - physiology
Cellular Senescence - physiology
Cyclin B - genetics
Cyclin B - metabolism
Deoxyribonucleic acid
DNA
DNA Damage - physiology
DNA damage checkpoints
DNA-Binding Proteins - metabolism
Fungal Proteins - metabolism
Genes, cdc
Life Sciences
Mutation
Rad50 and homologous recombination
Rad50 protein
Rad51 protein
Rad51 Recombinase
Rad52 DNA Repair and Recombination Protein
Rad52 protein
Recombination, Genetic - physiology
S.cerevisiae Cdc13
Saccharomyces cerevisiae
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
senescence
Stn1 protein
Telomerase - metabolism
Telomere - genetics
Telomere - metabolism
telomere uncapping
Telomere-Binding Proteins
Temperature
Ten1 protein
Yeasts
title Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cdc13%20prevents%20telomere%20uncapping%20and%20Rad50-dependent%20homologous%20recombination&rft.jtitle=The%20EMBO%20journal&rft.au=Grandin,%20Nathalie&rft.date=2001-11-01&rft.volume=20&rft.issue=21&rft.spage=6127&rft.epage=6139&rft.pages=6127-6139&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.21.6127&rft_dat=%3Cproquest_pubme%3E18121321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195265732&rft_id=info:pmid/11689452&rfr_iscdi=true