Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination
Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of cdc13 ‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient cdc13‐1 cells accumulated DNA damage and eventually senesced. However, these te...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2001-11, Vol.20 (21), p.6127-6139 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6139 |
---|---|
container_issue | 21 |
container_start_page | 6127 |
container_title | The EMBO journal |
container_volume | 20 |
creator | Grandin, Nathalie Damon, Christelle Charbonneau, Michel |
description | Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of
cdc13
‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient
cdc13‐1
cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in
cdc13‐1 mec3
, as well as in telomerase‐deficient
cdc13‐1
cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG
1–3
repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase. |
doi_str_mv | 10.1093/emboj/20.21.6127 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18121321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6134-792574ea84c69a06d8eb7d1479b5f5311c9dfa29f1cce65c606683e40e2ca2f43</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxSMEYmVw54QiDpM4pPPX8Y_4wGGrxgYqQ5pAQ1ws1_mmTUns4LSF_fc4pBpjEtopkvM-7_v0XpK8BDIFovJjbBd-fUzJlMJUAJWPkgkwQTJKJH-cTAgVkDEo1EHyrO_XhBBeSHiaHACIQjFOJ8nlrLSQp13AHbpNn26w8S0GTLfOmq6r3TI1rkyvTMlJVmKHroy6dOVb3_il3_ZpQOvbRe3MpvbuefKkMk2PL_bfw-TLu7PPs4ts_un8_exknlkBOcukolwyNAWzQhkiygIXsgQm1YJXPAewqqwMVRVYi4JbQYQocmQEqTW0Yvlh8nb07baLFksbMwXT6C7UrQk32pta__vH1Su99DsN8TCRkX8z8qt71MXJXA9vsSspBSU7iNqj_a3gf2yx3-i27i02jXEYC9CS0hiZ0QeFUACFnA6Or-8J134bXCxMg-JUcJkPbmQU2eD7PmB1mxOIHtbXf9bXlGgKelg_Iq_utvIX2M8dBWoU_KwbvHnQUJ99PP0guWJAhsphZPuIuSWGO6H_Hygbmbrf4K_beyZ810Lmkuvry3NN2enVV3b9Tav8N8KL3Ec</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195265732</pqid></control><display><type>article</type><title>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Grandin, Nathalie ; Damon, Christelle ; Charbonneau, Michel</creator><creatorcontrib>Grandin, Nathalie ; Damon, Christelle ; Charbonneau, Michel</creatorcontrib><description>Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of
cdc13
‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient
cdc13‐1
cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in
cdc13‐1 mec3
, as well as in telomerase‐deficient
cdc13‐1
cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG
1–3
repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.21.6127</identifier><identifier>PMID: 11689452</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Cdc13 protein ; Cell Cycle Proteins - metabolism ; Cell Survival - physiology ; Cellular Senescence - physiology ; Cyclin B - genetics ; Cyclin B - metabolism ; Deoxyribonucleic acid ; DNA ; DNA Damage - physiology ; DNA damage checkpoints ; DNA-Binding Proteins - metabolism ; Fungal Proteins - metabolism ; Genes, cdc ; Life Sciences ; Mutation ; Rad50 and homologous recombination ; Rad50 protein ; Rad51 protein ; Rad51 Recombinase ; Rad52 DNA Repair and Recombination Protein ; Rad52 protein ; Recombination, Genetic - physiology ; S.cerevisiae Cdc13 ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; senescence ; Stn1 protein ; Telomerase - metabolism ; Telomere - genetics ; Telomere - metabolism ; telomere uncapping ; Telomere-Binding Proteins ; Temperature ; Ten1 protein ; Yeasts</subject><ispartof>The EMBO journal, 2001-11, Vol.20 (21), p.6127-6139</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Nov 01, 2001</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6134-792574ea84c69a06d8eb7d1479b5f5311c9dfa29f1cce65c606683e40e2ca2f43</citedby><orcidid>0000-0003-0393-2586</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125707/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125707/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11689452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00077620$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grandin, Nathalie</creatorcontrib><creatorcontrib>Damon, Christelle</creatorcontrib><creatorcontrib>Charbonneau, Michel</creatorcontrib><title>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of
cdc13
‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient
cdc13‐1
cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in
cdc13‐1 mec3
, as well as in telomerase‐deficient
cdc13‐1
cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG
1–3
repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.</description><subject>Cdc13 protein</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Survival - physiology</subject><subject>Cellular Senescence - physiology</subject><subject>Cyclin B - genetics</subject><subject>Cyclin B - metabolism</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage - physiology</subject><subject>DNA damage checkpoints</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes, cdc</subject><subject>Life Sciences</subject><subject>Mutation</subject><subject>Rad50 and homologous recombination</subject><subject>Rad50 protein</subject><subject>Rad51 protein</subject><subject>Rad51 Recombinase</subject><subject>Rad52 DNA Repair and Recombination Protein</subject><subject>Rad52 protein</subject><subject>Recombination, Genetic - physiology</subject><subject>S.cerevisiae Cdc13</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>senescence</subject><subject>Stn1 protein</subject><subject>Telomerase - metabolism</subject><subject>Telomere - genetics</subject><subject>Telomere - metabolism</subject><subject>telomere uncapping</subject><subject>Telomere-Binding Proteins</subject><subject>Temperature</subject><subject>Ten1 protein</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9v0zAcxSMEYmVw54QiDpM4pPPX8Y_4wGGrxgYqQ5pAQ1ws1_mmTUns4LSF_fc4pBpjEtopkvM-7_v0XpK8BDIFovJjbBd-fUzJlMJUAJWPkgkwQTJKJH-cTAgVkDEo1EHyrO_XhBBeSHiaHACIQjFOJ8nlrLSQp13AHbpNn26w8S0GTLfOmq6r3TI1rkyvTMlJVmKHroy6dOVb3_il3_ZpQOvbRe3MpvbuefKkMk2PL_bfw-TLu7PPs4ts_un8_exknlkBOcukolwyNAWzQhkiygIXsgQm1YJXPAewqqwMVRVYi4JbQYQocmQEqTW0Yvlh8nb07baLFksbMwXT6C7UrQk32pta__vH1Su99DsN8TCRkX8z8qt71MXJXA9vsSspBSU7iNqj_a3gf2yx3-i27i02jXEYC9CS0hiZ0QeFUACFnA6Or-8J134bXCxMg-JUcJkPbmQU2eD7PmB1mxOIHtbXf9bXlGgKelg_Iq_utvIX2M8dBWoU_KwbvHnQUJ99PP0guWJAhsphZPuIuSWGO6H_Hygbmbrf4K_beyZ810Lmkuvry3NN2enVV3b9Tav8N8KL3Ec</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Grandin, Nathalie</creator><creator>Damon, Christelle</creator><creator>Charbonneau, Michel</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0393-2586</orcidid></search><sort><creationdate>20011101</creationdate><title>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</title><author>Grandin, Nathalie ; Damon, Christelle ; Charbonneau, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6134-792574ea84c69a06d8eb7d1479b5f5311c9dfa29f1cce65c606683e40e2ca2f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Cdc13 protein</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Survival - physiology</topic><topic>Cellular Senescence - physiology</topic><topic>Cyclin B - genetics</topic><topic>Cyclin B - metabolism</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage - physiology</topic><topic>DNA damage checkpoints</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes, cdc</topic><topic>Life Sciences</topic><topic>Mutation</topic><topic>Rad50 and homologous recombination</topic><topic>Rad50 protein</topic><topic>Rad51 protein</topic><topic>Rad51 Recombinase</topic><topic>Rad52 DNA Repair and Recombination Protein</topic><topic>Rad52 protein</topic><topic>Recombination, Genetic - physiology</topic><topic>S.cerevisiae Cdc13</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>senescence</topic><topic>Stn1 protein</topic><topic>Telomerase - metabolism</topic><topic>Telomere - genetics</topic><topic>Telomere - metabolism</topic><topic>telomere uncapping</topic><topic>Telomere-Binding Proteins</topic><topic>Temperature</topic><topic>Ten1 protein</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grandin, Nathalie</creatorcontrib><creatorcontrib>Damon, Christelle</creatorcontrib><creatorcontrib>Charbonneau, Michel</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grandin, Nathalie</au><au>Damon, Christelle</au><au>Charbonneau, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>20</volume><issue>21</issue><spage>6127</spage><epage>6139</epage><pages>6127-6139</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Cdc13 performs an essential function in telomere end protection in budding yeast. Here, we analyze the consequences on telomere dynamics of
cdc13
‐induced telomeric DNA damage in proliferating cells. Checkpoint‐deficient
cdc13‐1
cells accumulated DNA damage and eventually senesced. However, these telomerase‐proficient cells could survive by using homologous recombination but, contrary to telomerase‐deficient cells, did so without prior telomere shortening. Strikingly, homologous recombination in
cdc13‐1 mec3
, as well as in telomerase‐deficient
cdc13‐1
cells, which were Rad52‐ and Rad50‐dependent but Rad51‐independent, exclusively amplified the TG
1–3
repeats. This argues that not only short telomeres are substrates for type II recombination. The Cdc13‐1 mutant protein harbored a defect in its association with Stn1 and Ten1 but also an additional, unknown, defect that could not be cured by expressing a Cdc13‐1–Ten1–Stn1 fusion. We propose that Cdc13 prevents telomere uncapping and inhibits recombination between telomeric sequences through a pathway distinct from and complementary to that used by telomerase.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>11689452</pmid><doi>10.1093/emboj/20.21.6127</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0393-2586</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2001-11, Vol.20 (21), p.6127-6139 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125707 |
source | Wiley Free Content; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cdc13 protein Cell Cycle Proteins - metabolism Cell Survival - physiology Cellular Senescence - physiology Cyclin B - genetics Cyclin B - metabolism Deoxyribonucleic acid DNA DNA Damage - physiology DNA damage checkpoints DNA-Binding Proteins - metabolism Fungal Proteins - metabolism Genes, cdc Life Sciences Mutation Rad50 and homologous recombination Rad50 protein Rad51 protein Rad51 Recombinase Rad52 DNA Repair and Recombination Protein Rad52 protein Recombination, Genetic - physiology S.cerevisiae Cdc13 Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism senescence Stn1 protein Telomerase - metabolism Telomere - genetics Telomere - metabolism telomere uncapping Telomere-Binding Proteins Temperature Ten1 protein Yeasts |
title | Cdc13 prevents telomere uncapping and Rad50-dependent homologous recombination |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A39%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cdc13%20prevents%20telomere%20uncapping%20and%20Rad50-dependent%20homologous%20recombination&rft.jtitle=The%20EMBO%20journal&rft.au=Grandin,%20Nathalie&rft.date=2001-11-01&rft.volume=20&rft.issue=21&rft.spage=6127&rft.epage=6139&rft.pages=6127-6139&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.21.6127&rft_dat=%3Cproquest_pubme%3E18121321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195265732&rft_id=info:pmid/11689452&rfr_iscdi=true |