Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking
Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from s...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2001-10, Vol.20 (20), p.5650-5656 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5656 |
---|---|
container_issue | 20 |
container_start_page | 5650 |
container_title | The EMBO journal |
container_volume | 20 |
creator | Eitzen, Gary Thorngren, Naomi Wickner, William |
description | Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion. |
doi_str_mv | 10.1093/emboj/20.20.5650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72201928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6019-20063508ae7183184f7ed81b766a62264cdf84ffd545f882495d7819bf6a92bc3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotvCnQso4tBbWo_jTwkOdFUKqBSKQMDJchxnm202DnZS6H-Pl6y2BQlVGsmW5_3Gz34IPQF8AFgVh25V-uUhwQepGGf4HpoB5TgnWLD7aIYJh5yCVDtoN8YlxphJAQ_RDgBTEmM5Qy8-XXjoM9NV2byylKStHTJTDy5k3_tB9Nngs-AWY2sGl10ZO_rWZZW3l023eIQe1KaN7vFm3UNfXh9_nr_JTz-cvJ2_Os0tx6CSG8wLhqVxAmQBktbCVRJKwbnhhHBqqzod1hWjrJaSUMUqIUGVNTeKlLbYQy-nuf1YrlxlXTcE0-o-NCsTrrU3jf670zUXeuGvNBDGOUn8_oYP_sfo4qBXTbSubU3n_Bi1ICT5JPJOIUjAhSogCZ__I1z6MXTpEzQoRpjilCYRnkQ2-BiDq7eOAet1fvpPfprgda3zS8iz2y-9ATaBJYGaBD-b1l3fOVAfvz96J5iimKnEwsTGhHULF26Z_r-hpxPTmWEMbnvhzcx86jdxcL-2bRMuNReFYPrr2YmefyzOzsm3I31e_AaBCs_S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259644</pqid></control><display><type>article</type><title>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</title><source>Wiley-Blackwell Free Backfiles(OpenAccess)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Wiley Blackwell Journals</source><creator>Eitzen, Gary ; Thorngren, Naomi ; Wickner, William</creator><creatorcontrib>Eitzen, Gary ; Thorngren, Naomi ; Wickner, William</creatorcontrib><description>Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.20.5650</identifier><identifier>PMID: 11598008</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Alleles ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology ; Cdc42 protein ; Cdc42p ; Chelating Agents - pharmacology ; Egtazic Acid - analogs & derivatives ; Egtazic Acid - pharmacology ; Fungal Proteins - genetics ; Fungal Proteins - physiology ; GTPase ; Guanine Nucleotide Dissociation Inhibitors - pharmacology ; Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology ; Kinetics ; Macromolecular Substances ; Membrane Fusion ; Protein Transport ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - physiology ; ras GTPase-Activating Proteins - pharmacology ; Recombinant Fusion Proteins - physiology ; rho GTP-Binding Proteins - genetics ; rho GTP-Binding Proteins - physiology ; rho-Specific Guanine Nucleotide Dissociation Inhibitors ; Rho1 protein ; Rho1p ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins ; Vacuoles - physiology ; Ypt7 protein</subject><ispartof>The EMBO journal, 2001-10, Vol.20 (20), p.5650-5656</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Oct 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6019-20063508ae7183184f7ed81b766a62264cdf84ffd545f882495d7819bf6a92bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125662/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125662/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11598008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eitzen, Gary</creatorcontrib><creatorcontrib>Thorngren, Naomi</creatorcontrib><creatorcontrib>Wickner, William</creatorcontrib><title>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.</description><subject>Alleles</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology</subject><subject>Cdc42 protein</subject><subject>Cdc42p</subject><subject>Chelating Agents - pharmacology</subject><subject>Egtazic Acid - analogs & derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - physiology</subject><subject>GTPase</subject><subject>Guanine Nucleotide Dissociation Inhibitors - pharmacology</subject><subject>Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology</subject><subject>Kinetics</subject><subject>Macromolecular Substances</subject><subject>Membrane Fusion</subject><subject>Protein Transport</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - physiology</subject><subject>ras GTPase-Activating Proteins - pharmacology</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>rho GTP-Binding Proteins - genetics</subject><subject>rho GTP-Binding Proteins - physiology</subject><subject>rho-Specific Guanine Nucleotide Dissociation Inhibitors</subject><subject>Rho1 protein</subject><subject>Rho1p</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Vacuoles - physiology</subject><subject>Ypt7 protein</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1v1DAQxS0EotvCnQso4tBbWo_jTwkOdFUKqBSKQMDJchxnm202DnZS6H-Pl6y2BQlVGsmW5_3Gz34IPQF8AFgVh25V-uUhwQepGGf4HpoB5TgnWLD7aIYJh5yCVDtoN8YlxphJAQ_RDgBTEmM5Qy8-XXjoM9NV2byylKStHTJTDy5k3_tB9Nngs-AWY2sGl10ZO_rWZZW3l023eIQe1KaN7vFm3UNfXh9_nr_JTz-cvJ2_Os0tx6CSG8wLhqVxAmQBktbCVRJKwbnhhHBqqzod1hWjrJaSUMUqIUGVNTeKlLbYQy-nuf1YrlxlXTcE0-o-NCsTrrU3jf670zUXeuGvNBDGOUn8_oYP_sfo4qBXTbSubU3n_Bi1ICT5JPJOIUjAhSogCZ__I1z6MXTpEzQoRpjilCYRnkQ2-BiDq7eOAet1fvpPfprgda3zS8iz2y-9ATaBJYGaBD-b1l3fOVAfvz96J5iimKnEwsTGhHULF26Z_r-hpxPTmWEMbnvhzcx86jdxcL-2bRMuNReFYPrr2YmefyzOzsm3I31e_AaBCs_S</recordid><startdate>20011015</startdate><enddate>20011015</enddate><creator>Eitzen, Gary</creator><creator>Thorngren, Naomi</creator><creator>Wickner, William</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011015</creationdate><title>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</title><author>Eitzen, Gary ; Thorngren, Naomi ; Wickner, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6019-20063508ae7183184f7ed81b766a62264cdf84ffd545f882495d7819bf6a92bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alleles</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology</topic><topic>Cdc42 protein</topic><topic>Cdc42p</topic><topic>Chelating Agents - pharmacology</topic><topic>Egtazic Acid - analogs & derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - physiology</topic><topic>GTPase</topic><topic>Guanine Nucleotide Dissociation Inhibitors - pharmacology</topic><topic>Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology</topic><topic>Kinetics</topic><topic>Macromolecular Substances</topic><topic>Membrane Fusion</topic><topic>Protein Transport</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - physiology</topic><topic>ras GTPase-Activating Proteins - pharmacology</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>rho GTP-Binding Proteins - genetics</topic><topic>rho GTP-Binding Proteins - physiology</topic><topic>rho-Specific Guanine Nucleotide Dissociation Inhibitors</topic><topic>Rho1 protein</topic><topic>Rho1p</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Vacuoles - physiology</topic><topic>Ypt7 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eitzen, Gary</creatorcontrib><creatorcontrib>Thorngren, Naomi</creatorcontrib><creatorcontrib>Wickner, William</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eitzen, Gary</au><au>Thorngren, Naomi</au><au>Wickner, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-10-15</date><risdate>2001</risdate><volume>20</volume><issue>20</issue><spage>5650</spage><epage>5656</epage><pages>5650-5656</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>11598008</pmid><doi>10.1093/emboj/20.20.5650</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2001-10, Vol.20 (20), p.5650-5656 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125662 |
source | Wiley-Blackwell Free Backfiles(OpenAccess); MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Wiley Blackwell Journals |
subjects | Alleles cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology Cdc42 protein Cdc42p Chelating Agents - pharmacology Egtazic Acid - analogs & derivatives Egtazic Acid - pharmacology Fungal Proteins - genetics Fungal Proteins - physiology GTPase Guanine Nucleotide Dissociation Inhibitors - pharmacology Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology Kinetics Macromolecular Substances Membrane Fusion Protein Transport rab GTP-Binding Proteins - genetics rab GTP-Binding Proteins - physiology ras GTPase-Activating Proteins - pharmacology Recombinant Fusion Proteins - physiology rho GTP-Binding Proteins - genetics rho GTP-Binding Proteins - physiology rho-Specific Guanine Nucleotide Dissociation Inhibitors Rho1 protein Rho1p Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - ultrastructure Saccharomyces cerevisiae Proteins Vacuoles - physiology Ypt7 protein |
title | Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rho1p%20and%20Cdc42p%20act%20after%20Ypt7p%20to%20regulate%20vacuole%20docking&rft.jtitle=The%20EMBO%20journal&rft.au=Eitzen,%20Gary&rft.date=2001-10-15&rft.volume=20&rft.issue=20&rft.spage=5650&rft.epage=5656&rft.pages=5650-5656&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.20.5650&rft_dat=%3Cproquest_pubme%3E72201928%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259644&rft_id=info:pmid/11598008&rfr_iscdi=true |