Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking

Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2001-10, Vol.20 (20), p.5650-5656
Hauptverfasser: Eitzen, Gary, Thorngren, Naomi, Wickner, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5656
container_issue 20
container_start_page 5650
container_title The EMBO journal
container_volume 20
creator Eitzen, Gary
Thorngren, Naomi
Wickner, William
description Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.
doi_str_mv 10.1093/emboj/20.20.5650
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72201928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6019-20063508ae7183184f7ed81b766a62264cdf84ffd545f882495d7819bf6a92bc3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EotvCnQso4tBbWo_jTwkOdFUKqBSKQMDJchxnm202DnZS6H-Pl6y2BQlVGsmW5_3Gz34IPQF8AFgVh25V-uUhwQepGGf4HpoB5TgnWLD7aIYJh5yCVDtoN8YlxphJAQ_RDgBTEmM5Qy8-XXjoM9NV2byylKStHTJTDy5k3_tB9Nngs-AWY2sGl10ZO_rWZZW3l023eIQe1KaN7vFm3UNfXh9_nr_JTz-cvJ2_Os0tx6CSG8wLhqVxAmQBktbCVRJKwbnhhHBqqzod1hWjrJaSUMUqIUGVNTeKlLbYQy-nuf1YrlxlXTcE0-o-NCsTrrU3jf670zUXeuGvNBDGOUn8_oYP_sfo4qBXTbSubU3n_Bi1ICT5JPJOIUjAhSogCZ__I1z6MXTpEzQoRpjilCYRnkQ2-BiDq7eOAet1fvpPfprgda3zS8iz2y-9ATaBJYGaBD-b1l3fOVAfvz96J5iimKnEwsTGhHULF26Z_r-hpxPTmWEMbnvhzcx86jdxcL-2bRMuNReFYPrr2YmefyzOzsm3I31e_AaBCs_S</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195259644</pqid></control><display><type>article</type><title>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</title><source>Wiley-Blackwell Free Backfiles(OpenAccess)</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Wiley Blackwell Journals</source><creator>Eitzen, Gary ; Thorngren, Naomi ; Wickner, William</creator><creatorcontrib>Eitzen, Gary ; Thorngren, Naomi ; Wickner, William</creatorcontrib><description>Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.20.5650</identifier><identifier>PMID: 11598008</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Alleles ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics ; cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology ; Cdc42 protein ; Cdc42p ; Chelating Agents - pharmacology ; Egtazic Acid - analogs &amp; derivatives ; Egtazic Acid - pharmacology ; Fungal Proteins - genetics ; Fungal Proteins - physiology ; GTPase ; Guanine Nucleotide Dissociation Inhibitors - pharmacology ; Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology ; Kinetics ; Macromolecular Substances ; Membrane Fusion ; Protein Transport ; rab GTP-Binding Proteins - genetics ; rab GTP-Binding Proteins - physiology ; ras GTPase-Activating Proteins - pharmacology ; Recombinant Fusion Proteins - physiology ; rho GTP-Binding Proteins - genetics ; rho GTP-Binding Proteins - physiology ; rho-Specific Guanine Nucleotide Dissociation Inhibitors ; Rho1 protein ; Rho1p ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins ; Vacuoles - physiology ; Ypt7 protein</subject><ispartof>The EMBO journal, 2001-10, Vol.20 (20), p.5650-5656</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Oct 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6019-20063508ae7183184f7ed81b766a62264cdf84ffd545f882495d7819bf6a92bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125662/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125662/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11598008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eitzen, Gary</creatorcontrib><creatorcontrib>Thorngren, Naomi</creatorcontrib><creatorcontrib>Wickner, William</creatorcontrib><title>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.</description><subject>Alleles</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics</subject><subject>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology</subject><subject>Cdc42 protein</subject><subject>Cdc42p</subject><subject>Chelating Agents - pharmacology</subject><subject>Egtazic Acid - analogs &amp; derivatives</subject><subject>Egtazic Acid - pharmacology</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - physiology</subject><subject>GTPase</subject><subject>Guanine Nucleotide Dissociation Inhibitors - pharmacology</subject><subject>Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology</subject><subject>Kinetics</subject><subject>Macromolecular Substances</subject><subject>Membrane Fusion</subject><subject>Protein Transport</subject><subject>rab GTP-Binding Proteins - genetics</subject><subject>rab GTP-Binding Proteins - physiology</subject><subject>ras GTPase-Activating Proteins - pharmacology</subject><subject>Recombinant Fusion Proteins - physiology</subject><subject>rho GTP-Binding Proteins - genetics</subject><subject>rho GTP-Binding Proteins - physiology</subject><subject>rho-Specific Guanine Nucleotide Dissociation Inhibitors</subject><subject>Rho1 protein</subject><subject>Rho1p</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Vacuoles - physiology</subject><subject>Ypt7 protein</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1v1DAQxS0EotvCnQso4tBbWo_jTwkOdFUKqBSKQMDJchxnm202DnZS6H-Pl6y2BQlVGsmW5_3Gz34IPQF8AFgVh25V-uUhwQepGGf4HpoB5TgnWLD7aIYJh5yCVDtoN8YlxphJAQ_RDgBTEmM5Qy8-XXjoM9NV2byylKStHTJTDy5k3_tB9Nngs-AWY2sGl10ZO_rWZZW3l023eIQe1KaN7vFm3UNfXh9_nr_JTz-cvJ2_Os0tx6CSG8wLhqVxAmQBktbCVRJKwbnhhHBqqzod1hWjrJaSUMUqIUGVNTeKlLbYQy-nuf1YrlxlXTcE0-o-NCsTrrU3jf670zUXeuGvNBDGOUn8_oYP_sfo4qBXTbSubU3n_Bi1ICT5JPJOIUjAhSogCZ__I1z6MXTpEzQoRpjilCYRnkQ2-BiDq7eOAet1fvpPfprgda3zS8iz2y-9ATaBJYGaBD-b1l3fOVAfvz96J5iimKnEwsTGhHULF26Z_r-hpxPTmWEMbnvhzcx86jdxcL-2bRMuNReFYPrr2YmefyzOzsm3I31e_AaBCs_S</recordid><startdate>20011015</startdate><enddate>20011015</enddate><creator>Eitzen, Gary</creator><creator>Thorngren, Naomi</creator><creator>Wickner, William</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011015</creationdate><title>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</title><author>Eitzen, Gary ; Thorngren, Naomi ; Wickner, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6019-20063508ae7183184f7ed81b766a62264cdf84ffd545f882495d7819bf6a92bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Alleles</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics</topic><topic>cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology</topic><topic>Cdc42 protein</topic><topic>Cdc42p</topic><topic>Chelating Agents - pharmacology</topic><topic>Egtazic Acid - analogs &amp; derivatives</topic><topic>Egtazic Acid - pharmacology</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - physiology</topic><topic>GTPase</topic><topic>Guanine Nucleotide Dissociation Inhibitors - pharmacology</topic><topic>Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology</topic><topic>Kinetics</topic><topic>Macromolecular Substances</topic><topic>Membrane Fusion</topic><topic>Protein Transport</topic><topic>rab GTP-Binding Proteins - genetics</topic><topic>rab GTP-Binding Proteins - physiology</topic><topic>ras GTPase-Activating Proteins - pharmacology</topic><topic>Recombinant Fusion Proteins - physiology</topic><topic>rho GTP-Binding Proteins - genetics</topic><topic>rho GTP-Binding Proteins - physiology</topic><topic>rho-Specific Guanine Nucleotide Dissociation Inhibitors</topic><topic>Rho1 protein</topic><topic>Rho1p</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Vacuoles - physiology</topic><topic>Ypt7 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eitzen, Gary</creatorcontrib><creatorcontrib>Thorngren, Naomi</creatorcontrib><creatorcontrib>Wickner, William</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eitzen, Gary</au><au>Thorngren, Naomi</au><au>Wickner, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-10-15</date><risdate>2001</risdate><volume>20</volume><issue>20</issue><spage>5650</spage><epage>5656</epage><pages>5650-5656</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Rho GTPases, which control polarized cell growth through cytoskeletal reorganization, have recently been implicated in the control of endo‐ and exocytosis. We now report that both Rho1p and Cdc42p have a direct role in mediating the docking stage of homotypic vacuole fusion. Vacuoles prepared from strains with temperature‐sensitive alleles of either Rho1p or Cdc42p are thermolabile for fusion. RhoGDI (Rdi1p), which extracts Rho1p and Cdc42p from the vacuole membrane, blocks vacuole fusion. The Rho GTPases can not fulfill their function as long as priming and Ypt7p‐dependent tethering are inhibited. However, reactions that are reversibly blocked after docking by the calcium chelator BAPTA have passed the point of sensitivity to Rdi1p. Extraction and removal of Ypt7p, Rho1p and Cdc42p from docked vacuoles (by Gdi1p, Gyp7p and Rdi1p) does not impede subsequent membrane fusion, which is still sensitive to GTPγS. Thus, multiple GTPases act in a defined sequence to regulate the docking steps of vacuole fusion.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11598008</pmid><doi>10.1093/emboj/20.20.5650</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-10, Vol.20 (20), p.5650-5656
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125662
source Wiley-Blackwell Free Backfiles(OpenAccess); MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Wiley Blackwell Journals
subjects Alleles
cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - genetics
cdc42 GTP-Binding Protein, Saccharomyces cerevisiae - physiology
Cdc42 protein
Cdc42p
Chelating Agents - pharmacology
Egtazic Acid - analogs & derivatives
Egtazic Acid - pharmacology
Fungal Proteins - genetics
Fungal Proteins - physiology
GTPase
Guanine Nucleotide Dissociation Inhibitors - pharmacology
Guanosine 5'-O-(3-Thiotriphosphate) - pharmacology
Kinetics
Macromolecular Substances
Membrane Fusion
Protein Transport
rab GTP-Binding Proteins - genetics
rab GTP-Binding Proteins - physiology
ras GTPase-Activating Proteins - pharmacology
Recombinant Fusion Proteins - physiology
rho GTP-Binding Proteins - genetics
rho GTP-Binding Proteins - physiology
rho-Specific Guanine Nucleotide Dissociation Inhibitors
Rho1 protein
Rho1p
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - ultrastructure
Saccharomyces cerevisiae Proteins
Vacuoles - physiology
Ypt7 protein
title Rho1p and Cdc42p act after Ypt7p to regulate vacuole docking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rho1p%20and%20Cdc42p%20act%20after%20Ypt7p%20to%20regulate%20vacuole%20docking&rft.jtitle=The%20EMBO%20journal&rft.au=Eitzen,%20Gary&rft.date=2001-10-15&rft.volume=20&rft.issue=20&rft.spage=5650&rft.epage=5656&rft.pages=5650-5656&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.20.5650&rft_dat=%3Cproquest_pubme%3E72201928%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195259644&rft_id=info:pmid/11598008&rfr_iscdi=true