Nod Factors Induce Nod Factor Cleaving Enzymes in Pea Roots. Genetic and Pharmacological Approaches Indicate Different Activation Mechanisms
Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisacchari...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2005-10, Vol.139 (2), p.1051-1064 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1064 |
---|---|
container_issue | 2 |
container_start_page | 1051 |
container_title | Plant physiology (Bethesda) |
container_volume | 139 |
creator | Ovtsyna, Alexandra O Dolgikh, Elena A Kilanova, Alexandra S Tsyganov, Viktor E Borisov, Alexey Y Tikhonovich, Igor A Staehelin, Christian |
description | Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisaccharides from NFs from Sinorhizobium meliloti. Here, we investigated the ability of non-nodulating pea mutants to respond to NodRlv factors (NFs from Rhizobium leguminosarum bv viciae) with enhanced NF hydrolase activity. Mutants defective in the symbiotic genes sym10, sym8, sym19, and sym9/sym30 did not exhibit any stimulation of the NF hydrolase, indicating that the enzyme is induced via an NF signal transduction pathway that includes calcium spiking (transient increases in intracellular Ca²⁺ levels). Interestingly, the NF hydrolase activity in these sym mutants was even lower than in wild-type peas, which were not pretreated with NodRlv factors. Activation of the NF hydrolase in wild-type plants was a specific response to NodRlv factors. The induction of the NF hydrolase was blocked by [alpha]-amanitin, cycloheximide, tunicamycin, EGTA, U73122, and calyculin A. Inhibitory effects, albeit weaker, were also found for brefeldin A, BHQ and ethephon. In addition to this NF hydrolase, NFs and stress-related signals (ethylene and salicylic acid) stimulated a pea chitinase that released lipotrisaccharides from pentameric NFs from S. meliloti. NodRlv factors failed to stimulate the chitinase in mutants defective in the sym10 and sym8 genes, whereas other mutants (e.g. mutated in the sym19 gene) retained their ability to increase the chitinase activity. These findings indicate that calcium spiking is not implicated in stimulation of the chitinase. We suggest that downstream of Sym8, a stress-related signal transduction pathway branches off from the NF signal transduction pathway. |
doi_str_mv | 10.1104/pp.105.061705 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1256017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281934</jstor_id><sourcerecordid>4281934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c594t-711151c6d639d9417229c4760c34fbf368c609d80bd44d4dd0f55406f4fa235f3</originalsourceid><addsrcrecordid>eNqFkk9vEzEQxVcIREPhyA2BL3DbMP673gtSFNpSqUAF9Gw5XjtxtWsv9iZS-Qx8aAyJGjhxmtG83zyN9VxVzzHMMQb2dhznGPgcBG6AP6hmmFNSE87kw2oGUHqQsj2pnuR8CwCYYva4OsECSyo5zKqfn2KHzrWZYsroMnRbY9FxhJa91Tsf1ugs_LgbbEY-oGur0ZcYpzxHFzbYyRukQ4euNzoN2sQ-rr3RPVqMY4rabOwf3zKaLHrvnbPJhgktzOR3evIxoI_WbHTwechPq0dO99k-O9TT6ub87NvyQ331-eJyubiqDW_ZVDcYY46N6ARtu5bhhpDWsEaAocytHBXSCGg7CauOsY51HTjOGQjHnCaUO3pavdv7jtvVYDtTDkq6V2Pyg053Kmqv_lWC36h13ClMuADcFIM3B4MUv29tntTgs7F9r4ON26yEFC3BBP4LEpBUcEILWO9Bk2LOybr7azCo30GrcSwtV_ugC__y7ycc6UOyBXh9AHQucbikg_H5yDVYsuJbuBd77jaXwO91RiRuKSvyq73sdFR6nYrFzVdS_hGUXV4A-gvdPcR2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20836523</pqid></control><display><type>article</type><title>Nod Factors Induce Nod Factor Cleaving Enzymes in Pea Roots. Genetic and Pharmacological Approaches Indicate Different Activation Mechanisms</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ovtsyna, Alexandra O ; Dolgikh, Elena A ; Kilanova, Alexandra S ; Tsyganov, Viktor E ; Borisov, Alexey Y ; Tikhonovich, Igor A ; Staehelin, Christian</creator><creatorcontrib>Ovtsyna, Alexandra O ; Dolgikh, Elena A ; Kilanova, Alexandra S ; Tsyganov, Viktor E ; Borisov, Alexey Y ; Tikhonovich, Igor A ; Staehelin, Christian</creatorcontrib><description>Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisaccharides from NFs from Sinorhizobium meliloti. Here, we investigated the ability of non-nodulating pea mutants to respond to NodRlv factors (NFs from Rhizobium leguminosarum bv viciae) with enhanced NF hydrolase activity. Mutants defective in the symbiotic genes sym10, sym8, sym19, and sym9/sym30 did not exhibit any stimulation of the NF hydrolase, indicating that the enzyme is induced via an NF signal transduction pathway that includes calcium spiking (transient increases in intracellular Ca²⁺ levels). Interestingly, the NF hydrolase activity in these sym mutants was even lower than in wild-type peas, which were not pretreated with NodRlv factors. Activation of the NF hydrolase in wild-type plants was a specific response to NodRlv factors. The induction of the NF hydrolase was blocked by [alpha]-amanitin, cycloheximide, tunicamycin, EGTA, U73122, and calyculin A. Inhibitory effects, albeit weaker, were also found for brefeldin A, BHQ and ethephon. In addition to this NF hydrolase, NFs and stress-related signals (ethylene and salicylic acid) stimulated a pea chitinase that released lipotrisaccharides from pentameric NFs from S. meliloti. NodRlv factors failed to stimulate the chitinase in mutants defective in the sym10 and sym8 genes, whereas other mutants (e.g. mutated in the sym19 gene) retained their ability to increase the chitinase activity. These findings indicate that calcium spiking is not implicated in stimulation of the chitinase. We suggest that downstream of Sym8, a stress-related signal transduction pathway branches off from the NF signal transduction pathway.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.105.061705</identifier><identifier>PMID: 16183850</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Bacteria ; Calcium ; calcium signaling ; chitinase ; Chitinases - metabolism ; endosymbionts ; Enzyme Activation ; Enzymes ; ethylene ; Genes, Plant ; host-pathogen relationships ; hydrolases ; Hydrolases - metabolism ; lipochitooligosaccharides ; lipopolysaccharides ; Lipopolysaccharides - metabolism ; Lipopolysaccharides - pharmacology ; Mutation ; nod factor ; nod factor hydrolase ; Nodulation ; Peas ; Pisum sativum ; Pisum sativum - drug effects ; Pisum sativum - enzymology ; Pisum sativum - genetics ; Pisum sativum - microbiology ; plant biochemistry ; plant proteins ; Plant roots ; Plant Roots - drug effects ; Plant Roots - enzymology ; Plant Roots - microbiology ; Plants ; Plants Interacting with Other Organisms ; Receptors ; Rhizobium leguminosarum ; Rhizobium leguminosarum bv. viciae ; Rhizosphere ; Root hairs ; salicylic acid ; Signal transduction ; Signal Transduction - genetics ; Sinorhizobium meliloti ; Symbiosis</subject><ispartof>Plant physiology (Bethesda), 2005-10, Vol.139 (2), p.1051-1064</ispartof><rights>Copyright 2005 American Society of Plant Biologists</rights><rights>2005 INIST-CNRS</rights><rights>Copyright © 2005, American Society of Plant Biologists 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c594t-711151c6d639d9417229c4760c34fbf368c609d80bd44d4dd0f55406f4fa235f3</citedby><cites>FETCH-LOGICAL-c594t-711151c6d639d9417229c4760c34fbf368c609d80bd44d4dd0f55406f4fa235f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281934$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281934$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17184110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16183850$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ovtsyna, Alexandra O</creatorcontrib><creatorcontrib>Dolgikh, Elena A</creatorcontrib><creatorcontrib>Kilanova, Alexandra S</creatorcontrib><creatorcontrib>Tsyganov, Viktor E</creatorcontrib><creatorcontrib>Borisov, Alexey Y</creatorcontrib><creatorcontrib>Tikhonovich, Igor A</creatorcontrib><creatorcontrib>Staehelin, Christian</creatorcontrib><title>Nod Factors Induce Nod Factor Cleaving Enzymes in Pea Roots. Genetic and Pharmacological Approaches Indicate Different Activation Mechanisms</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisaccharides from NFs from Sinorhizobium meliloti. Here, we investigated the ability of non-nodulating pea mutants to respond to NodRlv factors (NFs from Rhizobium leguminosarum bv viciae) with enhanced NF hydrolase activity. Mutants defective in the symbiotic genes sym10, sym8, sym19, and sym9/sym30 did not exhibit any stimulation of the NF hydrolase, indicating that the enzyme is induced via an NF signal transduction pathway that includes calcium spiking (transient increases in intracellular Ca²⁺ levels). Interestingly, the NF hydrolase activity in these sym mutants was even lower than in wild-type peas, which were not pretreated with NodRlv factors. Activation of the NF hydrolase in wild-type plants was a specific response to NodRlv factors. The induction of the NF hydrolase was blocked by [alpha]-amanitin, cycloheximide, tunicamycin, EGTA, U73122, and calyculin A. Inhibitory effects, albeit weaker, were also found for brefeldin A, BHQ and ethephon. In addition to this NF hydrolase, NFs and stress-related signals (ethylene and salicylic acid) stimulated a pea chitinase that released lipotrisaccharides from pentameric NFs from S. meliloti. NodRlv factors failed to stimulate the chitinase in mutants defective in the sym10 and sym8 genes, whereas other mutants (e.g. mutated in the sym19 gene) retained their ability to increase the chitinase activity. These findings indicate that calcium spiking is not implicated in stimulation of the chitinase. We suggest that downstream of Sym8, a stress-related signal transduction pathway branches off from the NF signal transduction pathway.</description><subject>Bacteria</subject><subject>Calcium</subject><subject>calcium signaling</subject><subject>chitinase</subject><subject>Chitinases - metabolism</subject><subject>endosymbionts</subject><subject>Enzyme Activation</subject><subject>Enzymes</subject><subject>ethylene</subject><subject>Genes, Plant</subject><subject>host-pathogen relationships</subject><subject>hydrolases</subject><subject>Hydrolases - metabolism</subject><subject>lipochitooligosaccharides</subject><subject>lipopolysaccharides</subject><subject>Lipopolysaccharides - metabolism</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Mutation</subject><subject>nod factor</subject><subject>nod factor hydrolase</subject><subject>Nodulation</subject><subject>Peas</subject><subject>Pisum sativum</subject><subject>Pisum sativum - drug effects</subject><subject>Pisum sativum - enzymology</subject><subject>Pisum sativum - genetics</subject><subject>Pisum sativum - microbiology</subject><subject>plant biochemistry</subject><subject>plant proteins</subject><subject>Plant roots</subject><subject>Plant Roots - drug effects</subject><subject>Plant Roots - enzymology</subject><subject>Plant Roots - microbiology</subject><subject>Plants</subject><subject>Plants Interacting with Other Organisms</subject><subject>Receptors</subject><subject>Rhizobium leguminosarum</subject><subject>Rhizobium leguminosarum bv. viciae</subject><subject>Rhizosphere</subject><subject>Root hairs</subject><subject>salicylic acid</subject><subject>Signal transduction</subject><subject>Signal Transduction - genetics</subject><subject>Sinorhizobium meliloti</subject><subject>Symbiosis</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9vEzEQxVcIREPhyA2BL3DbMP673gtSFNpSqUAF9Gw5XjtxtWsv9iZS-Qx8aAyJGjhxmtG83zyN9VxVzzHMMQb2dhznGPgcBG6AP6hmmFNSE87kw2oGUHqQsj2pnuR8CwCYYva4OsECSyo5zKqfn2KHzrWZYsroMnRbY9FxhJa91Tsf1ugs_LgbbEY-oGur0ZcYpzxHFzbYyRukQ4euNzoN2sQ-rr3RPVqMY4rabOwf3zKaLHrvnbPJhgktzOR3evIxoI_WbHTwechPq0dO99k-O9TT6ub87NvyQ331-eJyubiqDW_ZVDcYY46N6ARtu5bhhpDWsEaAocytHBXSCGg7CauOsY51HTjOGQjHnCaUO3pavdv7jtvVYDtTDkq6V2Pyg053Kmqv_lWC36h13ClMuADcFIM3B4MUv29tntTgs7F9r4ON26yEFC3BBP4LEpBUcEILWO9Bk2LOybr7azCo30GrcSwtV_ugC__y7ycc6UOyBXh9AHQucbikg_H5yDVYsuJbuBd77jaXwO91RiRuKSvyq73sdFR6nYrFzVdS_hGUXV4A-gvdPcR2</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Ovtsyna, Alexandra O</creator><creator>Dolgikh, Elena A</creator><creator>Kilanova, Alexandra S</creator><creator>Tsyganov, Viktor E</creator><creator>Borisov, Alexey Y</creator><creator>Tikhonovich, Igor A</creator><creator>Staehelin, Christian</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051001</creationdate><title>Nod Factors Induce Nod Factor Cleaving Enzymes in Pea Roots. Genetic and Pharmacological Approaches Indicate Different Activation Mechanisms</title><author>Ovtsyna, Alexandra O ; Dolgikh, Elena A ; Kilanova, Alexandra S ; Tsyganov, Viktor E ; Borisov, Alexey Y ; Tikhonovich, Igor A ; Staehelin, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c594t-711151c6d639d9417229c4760c34fbf368c609d80bd44d4dd0f55406f4fa235f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bacteria</topic><topic>Calcium</topic><topic>calcium signaling</topic><topic>chitinase</topic><topic>Chitinases - metabolism</topic><topic>endosymbionts</topic><topic>Enzyme Activation</topic><topic>Enzymes</topic><topic>ethylene</topic><topic>Genes, Plant</topic><topic>host-pathogen relationships</topic><topic>hydrolases</topic><topic>Hydrolases - metabolism</topic><topic>lipochitooligosaccharides</topic><topic>lipopolysaccharides</topic><topic>Lipopolysaccharides - metabolism</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Mutation</topic><topic>nod factor</topic><topic>nod factor hydrolase</topic><topic>Nodulation</topic><topic>Peas</topic><topic>Pisum sativum</topic><topic>Pisum sativum - drug effects</topic><topic>Pisum sativum - enzymology</topic><topic>Pisum sativum - genetics</topic><topic>Pisum sativum - microbiology</topic><topic>plant biochemistry</topic><topic>plant proteins</topic><topic>Plant roots</topic><topic>Plant Roots - drug effects</topic><topic>Plant Roots - enzymology</topic><topic>Plant Roots - microbiology</topic><topic>Plants</topic><topic>Plants Interacting with Other Organisms</topic><topic>Receptors</topic><topic>Rhizobium leguminosarum</topic><topic>Rhizobium leguminosarum bv. viciae</topic><topic>Rhizosphere</topic><topic>Root hairs</topic><topic>salicylic acid</topic><topic>Signal transduction</topic><topic>Signal Transduction - genetics</topic><topic>Sinorhizobium meliloti</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ovtsyna, Alexandra O</creatorcontrib><creatorcontrib>Dolgikh, Elena A</creatorcontrib><creatorcontrib>Kilanova, Alexandra S</creatorcontrib><creatorcontrib>Tsyganov, Viktor E</creatorcontrib><creatorcontrib>Borisov, Alexey Y</creatorcontrib><creatorcontrib>Tikhonovich, Igor A</creatorcontrib><creatorcontrib>Staehelin, Christian</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ovtsyna, Alexandra O</au><au>Dolgikh, Elena A</au><au>Kilanova, Alexandra S</au><au>Tsyganov, Viktor E</au><au>Borisov, Alexey Y</au><au>Tikhonovich, Igor A</au><au>Staehelin, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nod Factors Induce Nod Factor Cleaving Enzymes in Pea Roots. Genetic and Pharmacological Approaches Indicate Different Activation Mechanisms</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2005-10-01</date><risdate>2005</risdate><volume>139</volume><issue>2</issue><spage>1051</spage><epage>1064</epage><pages>1051-1064</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Establishment of symbiosis between legumes and rhizobia requires bacterial Nod factors (NFs). The concentration of these lipochitooligosaccharides in the rhizosphere is influenced by plant enzymes. NFs induce on pea (Pisum sativum) a particular extracellular NF hydrolase that releases lipodisaccharides from NFs from Sinorhizobium meliloti. Here, we investigated the ability of non-nodulating pea mutants to respond to NodRlv factors (NFs from Rhizobium leguminosarum bv viciae) with enhanced NF hydrolase activity. Mutants defective in the symbiotic genes sym10, sym8, sym19, and sym9/sym30 did not exhibit any stimulation of the NF hydrolase, indicating that the enzyme is induced via an NF signal transduction pathway that includes calcium spiking (transient increases in intracellular Ca²⁺ levels). Interestingly, the NF hydrolase activity in these sym mutants was even lower than in wild-type peas, which were not pretreated with NodRlv factors. Activation of the NF hydrolase in wild-type plants was a specific response to NodRlv factors. The induction of the NF hydrolase was blocked by [alpha]-amanitin, cycloheximide, tunicamycin, EGTA, U73122, and calyculin A. Inhibitory effects, albeit weaker, were also found for brefeldin A, BHQ and ethephon. In addition to this NF hydrolase, NFs and stress-related signals (ethylene and salicylic acid) stimulated a pea chitinase that released lipotrisaccharides from pentameric NFs from S. meliloti. NodRlv factors failed to stimulate the chitinase in mutants defective in the sym10 and sym8 genes, whereas other mutants (e.g. mutated in the sym19 gene) retained their ability to increase the chitinase activity. These findings indicate that calcium spiking is not implicated in stimulation of the chitinase. We suggest that downstream of Sym8, a stress-related signal transduction pathway branches off from the NF signal transduction pathway.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>16183850</pmid><doi>10.1104/pp.105.061705</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2005-10, Vol.139 (2), p.1051-1064 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1256017 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Bacteria Calcium calcium signaling chitinase Chitinases - metabolism endosymbionts Enzyme Activation Enzymes ethylene Genes, Plant host-pathogen relationships hydrolases Hydrolases - metabolism lipochitooligosaccharides lipopolysaccharides Lipopolysaccharides - metabolism Lipopolysaccharides - pharmacology Mutation nod factor nod factor hydrolase Nodulation Peas Pisum sativum Pisum sativum - drug effects Pisum sativum - enzymology Pisum sativum - genetics Pisum sativum - microbiology plant biochemistry plant proteins Plant roots Plant Roots - drug effects Plant Roots - enzymology Plant Roots - microbiology Plants Plants Interacting with Other Organisms Receptors Rhizobium leguminosarum Rhizobium leguminosarum bv. viciae Rhizosphere Root hairs salicylic acid Signal transduction Signal Transduction - genetics Sinorhizobium meliloti Symbiosis |
title | Nod Factors Induce Nod Factor Cleaving Enzymes in Pea Roots. Genetic and Pharmacological Approaches Indicate Different Activation Mechanisms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A12%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nod%20Factors%20Induce%20Nod%20Factor%20Cleaving%20Enzymes%20in%20Pea%20Roots.%20Genetic%20and%20Pharmacological%20Approaches%20Indicate%20Different%20Activation%20Mechanisms&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ovtsyna,%20Alexandra%20O&rft.date=2005-10-01&rft.volume=139&rft.issue=2&rft.spage=1051&rft.epage=1064&rft.pages=1051-1064&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.105.061705&rft_dat=%3Cjstor_pubme%3E4281934%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20836523&rft_id=info:pmid/16183850&rft_jstor_id=4281934&rfr_iscdi=true |