Quality control of transmembrane domain assembly in the tetraspanin CD82
Retention of misfolded proteins in the endoplasmic reticulum (ER) is a primary mechanism of quality control. To discover whether quality control can monitor assembly inside the hydrophobic ER membrane, we characterized the folding and transport of the tetraspanin glycoprotein CD82. Truncated forms o...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2001-05, Vol.20 (10), p.2443-2453 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2453 |
---|---|
container_issue | 10 |
container_start_page | 2443 |
container_title | The EMBO journal |
container_volume | 20 |
creator | Cannon, Kurt S. Cresswell, Peter |
description | Retention of misfolded proteins in the endoplasmic reticulum (ER) is a primary mechanism of quality control. To discover whether quality control can monitor assembly inside the hydrophobic ER membrane, we characterized the folding and transport of the tetraspanin glycoprotein CD82. Truncated forms of CD82 that are missing one or more transmembrane segments remain in the ER. A construct (TM 2–4) that is missing the first transmembrane segment remains in the ER, even though its extracellular domain, which is facing the ER lumen, has folded to the native structure. Transport to the cell surface is restored by co‐expressing the missing segment (TM 1) as a separate polypeptide. Prior to leaving the ER, CD82 transiently associates with the membrane‐bound chaperone calnexin but not with its soluble homolog calreticulin. TM 2–4, in contrast, remains in a prolonged interaction with calnexin that is partially reversed by co‐expressing TM 1. These findings establish a simple system to study transmembrane domain assembly, show that ER quality control can directly monitor assembly inside the lipid bilayer and suggest that calnexin may play a role in this process. |
doi_str_mv | 10.1093/emboj/20.10.2443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70842914</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6363-db52d2b43408ee74efa9cf208acab13a19692ce5692df92f24c417db47837d293</originalsourceid><addsrcrecordid>eNqFUU1P3DAUtFARbIF7L60iDr0F_BnHhx5gS4EKWiGVIvViOc4LZJvEi5207L_HS1YLrVT14ufnNzOep0HoDcEHBCt2CG3hZod02R1QztkGmhCe4ZRiKV6hCaYZSTnJ1TZ6HcIMYyxySbbQNiFMRD6boLOrwTR1v0is63rvmsRVSe9NF9qoHSskpWtN3SUmhPjSLJJ47-8g6SHCwtx0sZ9-zOku2qxME2BvVXfQ9aeTb9Oz9OLr6fn06CK1GctYWhaClrTgjOMcQHKojLIVxbmxpiDMEJUpakHEs6wUrSi3nMiy4DJnsqSK7aAPo-58KFooLUTbptFzX7fGL7Qztf5z0tV3-tb90oQKLkTkv1_xvbsfIPS6rYOFpom7uiFoiXNOFeERuP8XcOYG38XdNFGCCpzhLILwCLLeheChWhshWC8j0k8Rabrs9DKiSHn3coFnwiqTCFAj4HfdwOK_gvrk8vizFIrJJ3EyckOkdbfgX5j-t6G3I6cz_eBh_eGzZjrO69DDw3ps_E-dSSaFvvlyqm-ujiWV339owh4Bn0TI0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195250606</pqid></control><display><type>article</type><title>Quality control of transmembrane domain assembly in the tetraspanin CD82</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cannon, Kurt S. ; Cresswell, Peter</creator><creatorcontrib>Cannon, Kurt S. ; Cresswell, Peter</creatorcontrib><description>Retention of misfolded proteins in the endoplasmic reticulum (ER) is a primary mechanism of quality control. To discover whether quality control can monitor assembly inside the hydrophobic ER membrane, we characterized the folding and transport of the tetraspanin glycoprotein CD82. Truncated forms of CD82 that are missing one or more transmembrane segments remain in the ER. A construct (TM 2–4) that is missing the first transmembrane segment remains in the ER, even though its extracellular domain, which is facing the ER lumen, has folded to the native structure. Transport to the cell surface is restored by co‐expressing the missing segment (TM 1) as a separate polypeptide. Prior to leaving the ER, CD82 transiently associates with the membrane‐bound chaperone calnexin but not with its soluble homolog calreticulin. TM 2–4, in contrast, remains in a prolonged interaction with calnexin that is partially reversed by co‐expressing TM 1. These findings establish a simple system to study transmembrane domain assembly, show that ER quality control can directly monitor assembly inside the lipid bilayer and suggest that calnexin may play a role in this process.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.10.2443</identifier><identifier>PMID: 11350933</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Antigens, CD - metabolism ; Binding Sites ; Biological Transport ; Calcium-Binding Proteins - metabolism ; Calnexin ; Calreticulin ; Cell Membrane - metabolism ; Cercopithecus aethiops ; chaperone ; CHO Cells ; COS Cells ; Cricetinae ; endoplasmic reticulum ; Endoplasmic Reticulum - metabolism ; Glycosylation ; Oxidation-Reduction ; Protein Folding ; Quality control ; Ribonucleoproteins - metabolism ; tetraspanin ; Trypsin - metabolism</subject><ispartof>The EMBO journal, 2001-05, Vol.20 (10), p.2443-2453</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) May 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6363-db52d2b43408ee74efa9cf208acab13a19692ce5692df92f24c417db47837d293</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125455/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125455/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11350933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cannon, Kurt S.</creatorcontrib><creatorcontrib>Cresswell, Peter</creatorcontrib><title>Quality control of transmembrane domain assembly in the tetraspanin CD82</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Retention of misfolded proteins in the endoplasmic reticulum (ER) is a primary mechanism of quality control. To discover whether quality control can monitor assembly inside the hydrophobic ER membrane, we characterized the folding and transport of the tetraspanin glycoprotein CD82. Truncated forms of CD82 that are missing one or more transmembrane segments remain in the ER. A construct (TM 2–4) that is missing the first transmembrane segment remains in the ER, even though its extracellular domain, which is facing the ER lumen, has folded to the native structure. Transport to the cell surface is restored by co‐expressing the missing segment (TM 1) as a separate polypeptide. Prior to leaving the ER, CD82 transiently associates with the membrane‐bound chaperone calnexin but not with its soluble homolog calreticulin. TM 2–4, in contrast, remains in a prolonged interaction with calnexin that is partially reversed by co‐expressing TM 1. These findings establish a simple system to study transmembrane domain assembly, show that ER quality control can directly monitor assembly inside the lipid bilayer and suggest that calnexin may play a role in this process.</description><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Binding Sites</subject><subject>Biological Transport</subject><subject>Calcium-Binding Proteins - metabolism</subject><subject>Calnexin</subject><subject>Calreticulin</subject><subject>Cell Membrane - metabolism</subject><subject>Cercopithecus aethiops</subject><subject>chaperone</subject><subject>CHO Cells</subject><subject>COS Cells</subject><subject>Cricetinae</subject><subject>endoplasmic reticulum</subject><subject>Endoplasmic Reticulum - metabolism</subject><subject>Glycosylation</subject><subject>Oxidation-Reduction</subject><subject>Protein Folding</subject><subject>Quality control</subject><subject>Ribonucleoproteins - metabolism</subject><subject>tetraspanin</subject><subject>Trypsin - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFUU1P3DAUtFARbIF7L60iDr0F_BnHhx5gS4EKWiGVIvViOc4LZJvEi5207L_HS1YLrVT14ufnNzOep0HoDcEHBCt2CG3hZod02R1QztkGmhCe4ZRiKV6hCaYZSTnJ1TZ6HcIMYyxySbbQNiFMRD6boLOrwTR1v0is63rvmsRVSe9NF9qoHSskpWtN3SUmhPjSLJJ47-8g6SHCwtx0sZ9-zOku2qxME2BvVXfQ9aeTb9Oz9OLr6fn06CK1GctYWhaClrTgjOMcQHKojLIVxbmxpiDMEJUpakHEs6wUrSi3nMiy4DJnsqSK7aAPo-58KFooLUTbptFzX7fGL7Qztf5z0tV3-tb90oQKLkTkv1_xvbsfIPS6rYOFpom7uiFoiXNOFeERuP8XcOYG38XdNFGCCpzhLILwCLLeheChWhshWC8j0k8Rabrs9DKiSHn3coFnwiqTCFAj4HfdwOK_gvrk8vizFIrJJ3EyckOkdbfgX5j-t6G3I6cz_eBh_eGzZjrO69DDw3ps_E-dSSaFvvlyqm-ujiWV339owh4Bn0TI0w</recordid><startdate>20010515</startdate><enddate>20010515</enddate><creator>Cannon, Kurt S.</creator><creator>Cresswell, Peter</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010515</creationdate><title>Quality control of transmembrane domain assembly in the tetraspanin CD82</title><author>Cannon, Kurt S. ; Cresswell, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6363-db52d2b43408ee74efa9cf208acab13a19692ce5692df92f24c417db47837d293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Binding Sites</topic><topic>Biological Transport</topic><topic>Calcium-Binding Proteins - metabolism</topic><topic>Calnexin</topic><topic>Calreticulin</topic><topic>Cell Membrane - metabolism</topic><topic>Cercopithecus aethiops</topic><topic>chaperone</topic><topic>CHO Cells</topic><topic>COS Cells</topic><topic>Cricetinae</topic><topic>endoplasmic reticulum</topic><topic>Endoplasmic Reticulum - metabolism</topic><topic>Glycosylation</topic><topic>Oxidation-Reduction</topic><topic>Protein Folding</topic><topic>Quality control</topic><topic>Ribonucleoproteins - metabolism</topic><topic>tetraspanin</topic><topic>Trypsin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cannon, Kurt S.</creatorcontrib><creatorcontrib>Cresswell, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cannon, Kurt S.</au><au>Cresswell, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quality control of transmembrane domain assembly in the tetraspanin CD82</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-05-15</date><risdate>2001</risdate><volume>20</volume><issue>10</issue><spage>2443</spage><epage>2453</epage><pages>2443-2453</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Retention of misfolded proteins in the endoplasmic reticulum (ER) is a primary mechanism of quality control. To discover whether quality control can monitor assembly inside the hydrophobic ER membrane, we characterized the folding and transport of the tetraspanin glycoprotein CD82. Truncated forms of CD82 that are missing one or more transmembrane segments remain in the ER. A construct (TM 2–4) that is missing the first transmembrane segment remains in the ER, even though its extracellular domain, which is facing the ER lumen, has folded to the native structure. Transport to the cell surface is restored by co‐expressing the missing segment (TM 1) as a separate polypeptide. Prior to leaving the ER, CD82 transiently associates with the membrane‐bound chaperone calnexin but not with its soluble homolog calreticulin. TM 2–4, in contrast, remains in a prolonged interaction with calnexin that is partially reversed by co‐expressing TM 1. These findings establish a simple system to study transmembrane domain assembly, show that ER quality control can directly monitor assembly inside the lipid bilayer and suggest that calnexin may play a role in this process.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>11350933</pmid><doi>10.1093/emboj/20.10.2443</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2001-05, Vol.20 (10), p.2443-2453 |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125455 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Antigens, CD - metabolism Binding Sites Biological Transport Calcium-Binding Proteins - metabolism Calnexin Calreticulin Cell Membrane - metabolism Cercopithecus aethiops chaperone CHO Cells COS Cells Cricetinae endoplasmic reticulum Endoplasmic Reticulum - metabolism Glycosylation Oxidation-Reduction Protein Folding Quality control Ribonucleoproteins - metabolism tetraspanin Trypsin - metabolism |
title | Quality control of transmembrane domain assembly in the tetraspanin CD82 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A51%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quality%20control%20of%20transmembrane%20domain%20assembly%20in%20the%20tetraspanin%20CD82&rft.jtitle=The%20EMBO%20journal&rft.au=Cannon,%20Kurt%20S.&rft.date=2001-05-15&rft.volume=20&rft.issue=10&rft.spage=2443&rft.epage=2453&rft.pages=2443-2453&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.10.2443&rft_dat=%3Cproquest_pubme%3E70842914%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195250606&rft_id=info:pmid/11350933&rfr_iscdi=true |