Regulation of glutamate dehydrogenase by reversible ADP‐ribosylation in mitochondria

Mitochondrial ADP‐ribosylation leads to modification of two proteins of ∼26 and 53 kDa. The nature of these proteins and, hence, the physiological consequences of their modification have remained unknown. Here, a 55 kDa protein, glutamate dehydrogenase (GDH), was established as a specific acceptor f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2001-05, Vol.20 (10), p.2404-2412
Hauptverfasser: Herrero‐Yraola, Andrés, Bakhit, Siham M.A., Franke, Peter, Weise, Christoph, Schweiger, Manfred, Jorcke, Dierk, Ziegler, Mathias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2412
container_issue 10
container_start_page 2404
container_title The EMBO journal
container_volume 20
creator Herrero‐Yraola, Andrés
Bakhit, Siham M.A.
Franke, Peter
Weise, Christoph
Schweiger, Manfred
Jorcke, Dierk
Ziegler, Mathias
description Mitochondrial ADP‐ribosylation leads to modification of two proteins of ∼26 and 53 kDa. The nature of these proteins and, hence, the physiological consequences of their modification have remained unknown. Here, a 55 kDa protein, glutamate dehydrogenase (GDH), was established as a specific acceptor for enzymatic, cysteine‐specific ADP‐ribosylation in mitochondria. The modified protein was isolated from the mitochondrial preparation and identified as GDH by N‐terminal sequencing and mass spectrometric analyses of tryptic digests. Incubation of human hepatoma cells with [ 14 C]adenine demonstrated the occurrence of the modification in vivo . Purified GDH was ADP‐ribosylated in a cysteine residue in the presence of the mitochondrial activity that transferred the ADP‐ribose from NAD + onto the acceptor site. ADP‐ ribosylation of GDH led to substantial inhibition of its catalytic activity. The stoichiometry between incorporated ADP‐ribose and GDH subunits suggests that modification of one subunit per catalytically active homohexamer causes the inactivation of the enzyme. Isolated, ADP‐ribosylated GDH was reactivated by an Mg 2+ ‐dependent mitochondrial ADP‐ribosylcysteine hydrolase. GDH, a highly regulated enzyme, is the first mitochondrial protein identified whose activity may be modulated by ADP‐ribosylation.
doi_str_mv 10.1093/emboj/20.10.2404
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70844156</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3129-3781cf6e70200cc158c6d7e278e01248f580c5b510a3a2c6fea4ddb44cb1951b3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhzwpFLNil9XXs2FmwKKXlR0UgBGwtx7nJeJTEUzspyo5H6DPyJCTMtBQkVtbVPcf67I-Qp0CPgBbZMXal3xyzZTpinPJ7ZAU8pymjUtwnK8pySDmo4oA8inFDKRVKwkNyAJAJWrBiRb59xmZszeB8n_g6adpxMJ0ZMKlwPVXBN9ibiEk5JQGvMERXtpicvP7088d1cKWP0951fdK5wdu176vgzGPyoDZtxCf785B8PT_7cvo2vfj45t3pyUW6zYAVaSYV2DpHSRml1oJQNq8kMqmQAuOqFopaUQqgJjPM5jUaXlUl57aEQkCZHZKXu3u3Y9lhZbEfgmn1NrjOhEl74_Tfm96tdeOvNDDBBcz-i70f_OWIcdCdixbb1vTox6glVZyDyGfw-T_gxo-hn9-m5ySMy0KJGXp2N81tjJvvnoFiB3x3LU5_9lQvderfdWq2THqpU599ePVeiiKT2eLCzo2z1jcY7iT4j5_9AtnUpx0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195247985</pqid></control><display><type>article</type><title>Regulation of glutamate dehydrogenase by reversible ADP‐ribosylation in mitochondria</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Herrero‐Yraola, Andrés ; Bakhit, Siham M.A. ; Franke, Peter ; Weise, Christoph ; Schweiger, Manfred ; Jorcke, Dierk ; Ziegler, Mathias</creator><creatorcontrib>Herrero‐Yraola, Andrés ; Bakhit, Siham M.A. ; Franke, Peter ; Weise, Christoph ; Schweiger, Manfred ; Jorcke, Dierk ; Ziegler, Mathias</creatorcontrib><description>Mitochondrial ADP‐ribosylation leads to modification of two proteins of ∼26 and 53 kDa. The nature of these proteins and, hence, the physiological consequences of their modification have remained unknown. Here, a 55 kDa protein, glutamate dehydrogenase (GDH), was established as a specific acceptor for enzymatic, cysteine‐specific ADP‐ribosylation in mitochondria. The modified protein was isolated from the mitochondrial preparation and identified as GDH by N‐terminal sequencing and mass spectrometric analyses of tryptic digests. Incubation of human hepatoma cells with [ 14 C]adenine demonstrated the occurrence of the modification in vivo . Purified GDH was ADP‐ribosylated in a cysteine residue in the presence of the mitochondrial activity that transferred the ADP‐ribose from NAD + onto the acceptor site. ADP‐ ribosylation of GDH led to substantial inhibition of its catalytic activity. The stoichiometry between incorporated ADP‐ribose and GDH subunits suggests that modification of one subunit per catalytically active homohexamer causes the inactivation of the enzyme. Isolated, ADP‐ribosylated GDH was reactivated by an Mg 2+ ‐dependent mitochondrial ADP‐ribosylcysteine hydrolase. GDH, a highly regulated enzyme, is the first mitochondrial protein identified whose activity may be modulated by ADP‐ribosylation.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.10.2404</identifier><identifier>PMID: 11350929</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenosine diphosphate ; Adenosine Diphosphate - metabolism ; Adenosine Diphosphate Ribose - metabolism ; ADP‐ribosylation ; Amino Acid Sequence ; Animals ; Cations, Divalent ; Cattle ; Dehydrogenase ; glutamate dehydrogenase ; Glutamate Dehydrogenase - metabolism ; Guanosine Diphosphate - metabolism ; Inactivation ; Magnesium ; mitochondria ; Mitochondria, Liver - enzymology ; Molecular Sequence Data ; NAD - metabolism ; NADP - metabolism ; protein modification</subject><ispartof>The EMBO journal, 2001-05, Vol.20 (10), p.2404-2412</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) May 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125451/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125451/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27903,27904,45553,45554,46387,46811,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11350929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herrero‐Yraola, Andrés</creatorcontrib><creatorcontrib>Bakhit, Siham M.A.</creatorcontrib><creatorcontrib>Franke, Peter</creatorcontrib><creatorcontrib>Weise, Christoph</creatorcontrib><creatorcontrib>Schweiger, Manfred</creatorcontrib><creatorcontrib>Jorcke, Dierk</creatorcontrib><creatorcontrib>Ziegler, Mathias</creatorcontrib><title>Regulation of glutamate dehydrogenase by reversible ADP‐ribosylation in mitochondria</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Mitochondrial ADP‐ribosylation leads to modification of two proteins of ∼26 and 53 kDa. The nature of these proteins and, hence, the physiological consequences of their modification have remained unknown. Here, a 55 kDa protein, glutamate dehydrogenase (GDH), was established as a specific acceptor for enzymatic, cysteine‐specific ADP‐ribosylation in mitochondria. The modified protein was isolated from the mitochondrial preparation and identified as GDH by N‐terminal sequencing and mass spectrometric analyses of tryptic digests. Incubation of human hepatoma cells with [ 14 C]adenine demonstrated the occurrence of the modification in vivo . Purified GDH was ADP‐ribosylated in a cysteine residue in the presence of the mitochondrial activity that transferred the ADP‐ribose from NAD + onto the acceptor site. ADP‐ ribosylation of GDH led to substantial inhibition of its catalytic activity. The stoichiometry between incorporated ADP‐ribose and GDH subunits suggests that modification of one subunit per catalytically active homohexamer causes the inactivation of the enzyme. Isolated, ADP‐ribosylated GDH was reactivated by an Mg 2+ ‐dependent mitochondrial ADP‐ribosylcysteine hydrolase. GDH, a highly regulated enzyme, is the first mitochondrial protein identified whose activity may be modulated by ADP‐ribosylation.</description><subject>Adenosine diphosphate</subject><subject>Adenosine Diphosphate - metabolism</subject><subject>Adenosine Diphosphate Ribose - metabolism</subject><subject>ADP‐ribosylation</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cations, Divalent</subject><subject>Cattle</subject><subject>Dehydrogenase</subject><subject>glutamate dehydrogenase</subject><subject>Glutamate Dehydrogenase - metabolism</subject><subject>Guanosine Diphosphate - metabolism</subject><subject>Inactivation</subject><subject>Magnesium</subject><subject>mitochondria</subject><subject>Mitochondria, Liver - enzymology</subject><subject>Molecular Sequence Data</subject><subject>NAD - metabolism</subject><subject>NADP - metabolism</subject><subject>protein modification</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kc1u1DAURi0EokNhzwpFLNil9XXs2FmwKKXlR0UgBGwtx7nJeJTEUzspyo5H6DPyJCTMtBQkVtbVPcf67I-Qp0CPgBbZMXal3xyzZTpinPJ7ZAU8pymjUtwnK8pySDmo4oA8inFDKRVKwkNyAJAJWrBiRb59xmZszeB8n_g6adpxMJ0ZMKlwPVXBN9ibiEk5JQGvMERXtpicvP7088d1cKWP0951fdK5wdu176vgzGPyoDZtxCf785B8PT_7cvo2vfj45t3pyUW6zYAVaSYV2DpHSRml1oJQNq8kMqmQAuOqFopaUQqgJjPM5jUaXlUl57aEQkCZHZKXu3u3Y9lhZbEfgmn1NrjOhEl74_Tfm96tdeOvNDDBBcz-i70f_OWIcdCdixbb1vTox6glVZyDyGfw-T_gxo-hn9-m5ySMy0KJGXp2N81tjJvvnoFiB3x3LU5_9lQvderfdWq2THqpU599ePVeiiKT2eLCzo2z1jcY7iT4j5_9AtnUpx0</recordid><startdate>20010515</startdate><enddate>20010515</enddate><creator>Herrero‐Yraola, Andrés</creator><creator>Bakhit, Siham M.A.</creator><creator>Franke, Peter</creator><creator>Weise, Christoph</creator><creator>Schweiger, Manfred</creator><creator>Jorcke, Dierk</creator><creator>Ziegler, Mathias</creator><general>Nature Publishing Group UK</general><general>John Wiley &amp; Sons, Ltd</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010515</creationdate><title>Regulation of glutamate dehydrogenase by reversible ADP‐ribosylation in mitochondria</title><author>Herrero‐Yraola, Andrés ; Bakhit, Siham M.A. ; Franke, Peter ; Weise, Christoph ; Schweiger, Manfred ; Jorcke, Dierk ; Ziegler, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3129-3781cf6e70200cc158c6d7e278e01248f580c5b510a3a2c6fea4ddb44cb1951b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adenosine diphosphate</topic><topic>Adenosine Diphosphate - metabolism</topic><topic>Adenosine Diphosphate Ribose - metabolism</topic><topic>ADP‐ribosylation</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cations, Divalent</topic><topic>Cattle</topic><topic>Dehydrogenase</topic><topic>glutamate dehydrogenase</topic><topic>Glutamate Dehydrogenase - metabolism</topic><topic>Guanosine Diphosphate - metabolism</topic><topic>Inactivation</topic><topic>Magnesium</topic><topic>mitochondria</topic><topic>Mitochondria, Liver - enzymology</topic><topic>Molecular Sequence Data</topic><topic>NAD - metabolism</topic><topic>NADP - metabolism</topic><topic>protein modification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herrero‐Yraola, Andrés</creatorcontrib><creatorcontrib>Bakhit, Siham M.A.</creatorcontrib><creatorcontrib>Franke, Peter</creatorcontrib><creatorcontrib>Weise, Christoph</creatorcontrib><creatorcontrib>Schweiger, Manfred</creatorcontrib><creatorcontrib>Jorcke, Dierk</creatorcontrib><creatorcontrib>Ziegler, Mathias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herrero‐Yraola, Andrés</au><au>Bakhit, Siham M.A.</au><au>Franke, Peter</au><au>Weise, Christoph</au><au>Schweiger, Manfred</au><au>Jorcke, Dierk</au><au>Ziegler, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of glutamate dehydrogenase by reversible ADP‐ribosylation in mitochondria</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-05-15</date><risdate>2001</risdate><volume>20</volume><issue>10</issue><spage>2404</spage><epage>2412</epage><pages>2404-2412</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Mitochondrial ADP‐ribosylation leads to modification of two proteins of ∼26 and 53 kDa. The nature of these proteins and, hence, the physiological consequences of their modification have remained unknown. Here, a 55 kDa protein, glutamate dehydrogenase (GDH), was established as a specific acceptor for enzymatic, cysteine‐specific ADP‐ribosylation in mitochondria. The modified protein was isolated from the mitochondrial preparation and identified as GDH by N‐terminal sequencing and mass spectrometric analyses of tryptic digests. Incubation of human hepatoma cells with [ 14 C]adenine demonstrated the occurrence of the modification in vivo . Purified GDH was ADP‐ribosylated in a cysteine residue in the presence of the mitochondrial activity that transferred the ADP‐ribose from NAD + onto the acceptor site. ADP‐ ribosylation of GDH led to substantial inhibition of its catalytic activity. The stoichiometry between incorporated ADP‐ribose and GDH subunits suggests that modification of one subunit per catalytically active homohexamer causes the inactivation of the enzyme. Isolated, ADP‐ribosylated GDH was reactivated by an Mg 2+ ‐dependent mitochondrial ADP‐ribosylcysteine hydrolase. GDH, a highly regulated enzyme, is the first mitochondrial protein identified whose activity may be modulated by ADP‐ribosylation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11350929</pmid><doi>10.1093/emboj/20.10.2404</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-05, Vol.20 (10), p.2404-2412
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125451
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adenosine diphosphate
Adenosine Diphosphate - metabolism
Adenosine Diphosphate Ribose - metabolism
ADP‐ribosylation
Amino Acid Sequence
Animals
Cations, Divalent
Cattle
Dehydrogenase
glutamate dehydrogenase
Glutamate Dehydrogenase - metabolism
Guanosine Diphosphate - metabolism
Inactivation
Magnesium
mitochondria
Mitochondria, Liver - enzymology
Molecular Sequence Data
NAD - metabolism
NADP - metabolism
protein modification
title Regulation of glutamate dehydrogenase by reversible ADP‐ribosylation in mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A45%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20glutamate%20dehydrogenase%20by%20reversible%20ADP%E2%80%90ribosylation%20in%20mitochondria&rft.jtitle=The%20EMBO%20journal&rft.au=Herrero%E2%80%90Yraola,%20Andr%C3%A9s&rft.date=2001-05-15&rft.volume=20&rft.issue=10&rft.spage=2404&rft.epage=2412&rft.pages=2404-2412&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.10.2404&rft_dat=%3Cproquest_pubme%3E70844156%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195247985&rft_id=info:pmid/11350929&rfr_iscdi=true