Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site

In Drosophila , dosage compensation is controlled by the male‐specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression ∼2‐fold. We recently proposed a model for the targeted assembly of the MS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2001-05, Vol.20 (9), p.2236-2245
Hauptverfasser: Kageyama, Y., Mengus, G., Gilfillan, G., Kennedy, H. G., Stuckenholz, C., Kelley, R. L., Becker, P. B., Kuroda, M. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2245
container_issue 9
container_start_page 2236
container_title The EMBO journal
container_volume 20
creator Kageyama, Y.
Mengus, G.
Gilfillan, G.
Kennedy, H. G.
Stuckenholz, C.
Kelley, R. L.
Becker, P. B.
Kuroda, M. I.
description In Drosophila , dosage compensation is controlled by the male‐specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression ∼2‐fold. We recently proposed a model for the targeted assembly of the MSL complex, in which initial binding occurs at ∼35 dispersed chromatin entry sites, followed by spreading in cis into flanking regions. Here, we analyze one of the chromatin entry sites, the roX1 gene, to determine which sequences are sufficient to recruit the MSL complex. We found association and spreading of the MSL complex from roX1 transgenes in the absence of detectable roX1 RNA synthesis from the transgene. We mapped the recruitment activity to a 217 bp roX1 fragment that shows male‐specific DNase hypersensitivity and can be preferentially cross‐linked in vivo to the MSL complex. When inserted on autosomes, this small roX1 segment is sufficient to produce an ectopic chromatin entry site that can nucleate binding and spreading of the MSL complex hundreds of kilobases into neighboring regions.
doi_str_mv 10.1093/emboj/20.9.2236
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17863303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5693-241a62a7876674a3676289f290f0d571794d398060778c273a21af469947e8523</originalsourceid><addsrcrecordid>eNqFkTtz1DAUhTUMDFkCNRWMKjrv6mHrUVCEJIRHeBRhYGg0in29q8W2HMmbZP89Mt7ZQEMqjXS_c--5Ogg9p2ROieYLaC_9esHIXM8Z4-IBmtFckIwRWTxEM8IEzXKq9AF6EuOaEFIoSR-jA0o5p4XSM3R1FKMvnR2c77DtKhz7ALZy3RL7Gg8rwCfBR9-vXGNx5aNdAi5920MXJ814aeAW18G3OCEulgEGwMH_oLhcpdfEdRi6IWxxdAM8RY9q20R4tjsP0be3pxfH77LzL2fvj4_Os7IQmmcsp1YwK5UUQuaWCymY0jXTpCZVIanUecW1IoJIqUomuWXU1rnQOpegCsYP0eupb7-5bKEqRwe2MX1wrQ1b460z_1Y6tzJLf20oK1hOkv7VTh_81QbiYNq0GzSN7cBvopFEUa6UvBekUgnOCU_gYgLL9KUxQL03Q4kZ4zR_4jSMGG3GOJPi5d873PG7_BKgJuDGNbC9r585_fTmgyw0l2x0QyZpSjzFDcGs_SZ0KZL_2HkxSTo7bALsx921zKa6iwPc7ss2_DJCclmY75_PzM-Lk68fiaBG8d_tCdd2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17863303</pqid></control><display><type>article</type><title>Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site</title><source>PubMed Central (Open access)</source><source>MEDLINE</source><source>Wiley Online Library Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Kageyama, Y. ; Mengus, G. ; Gilfillan, G. ; Kennedy, H. G. ; Stuckenholz, C. ; Kelley, R. L. ; Becker, P. B. ; Kuroda, M. I.</creator><creatorcontrib>Kageyama, Y. ; Mengus, G. ; Gilfillan, G. ; Kennedy, H. G. ; Stuckenholz, C. ; Kelley, R. L. ; Becker, P. B. ; Kuroda, M. I.</creatorcontrib><description>In Drosophila , dosage compensation is controlled by the male‐specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression ∼2‐fold. We recently proposed a model for the targeted assembly of the MSL complex, in which initial binding occurs at ∼35 dispersed chromatin entry sites, followed by spreading in cis into flanking regions. Here, we analyze one of the chromatin entry sites, the roX1 gene, to determine which sequences are sufficient to recruit the MSL complex. We found association and spreading of the MSL complex from roX1 transgenes in the absence of detectable roX1 RNA synthesis from the transgene. We mapped the recruitment activity to a 217 bp roX1 fragment that shows male‐specific DNase hypersensitivity and can be preferentially cross‐linked in vivo to the MSL complex. When inserted on autosomes, this small roX1 segment is sufficient to produce an ectopic chromatin entry site that can nucleate binding and spreading of the MSL complex hundreds of kilobases into neighboring regions.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.9.2236</identifier><identifier>PMID: 11331589</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Animals ; Cell Line ; Chromatin - genetics ; chromatin remodeling ; Chromosomal Proteins, Non-Histone ; Chromosome Mapping ; DNA Helicases ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; dosage compensation ; Dosage Compensation, Genetic ; Drosophila ; Drosophila Proteins ; Exons ; Gene Expression ; Macromolecular Substances ; Male ; Models, Genetic ; MSL protein ; non-coding RNAs ; Nuclear Proteins - genetics ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; RNA Helicases - metabolism ; RNA, Messenger - biosynthesis ; roX1 gene ; Saccharomyces cerevisiae Proteins ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Transgenes ; X Chromosome - genetics</subject><ispartof>The EMBO journal, 2001-05, Vol.20 (9), p.2236-2245</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5693-241a62a7876674a3676289f290f0d571794d398060778c273a21af469947e8523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125240/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125240/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11331589$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kageyama, Y.</creatorcontrib><creatorcontrib>Mengus, G.</creatorcontrib><creatorcontrib>Gilfillan, G.</creatorcontrib><creatorcontrib>Kennedy, H. G.</creatorcontrib><creatorcontrib>Stuckenholz, C.</creatorcontrib><creatorcontrib>Kelley, R. L.</creatorcontrib><creatorcontrib>Becker, P. B.</creatorcontrib><creatorcontrib>Kuroda, M. I.</creatorcontrib><title>Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>In Drosophila , dosage compensation is controlled by the male‐specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression ∼2‐fold. We recently proposed a model for the targeted assembly of the MSL complex, in which initial binding occurs at ∼35 dispersed chromatin entry sites, followed by spreading in cis into flanking regions. Here, we analyze one of the chromatin entry sites, the roX1 gene, to determine which sequences are sufficient to recruit the MSL complex. We found association and spreading of the MSL complex from roX1 transgenes in the absence of detectable roX1 RNA synthesis from the transgene. We mapped the recruitment activity to a 217 bp roX1 fragment that shows male‐specific DNase hypersensitivity and can be preferentially cross‐linked in vivo to the MSL complex. When inserted on autosomes, this small roX1 segment is sufficient to produce an ectopic chromatin entry site that can nucleate binding and spreading of the MSL complex hundreds of kilobases into neighboring regions.</description><subject>Animals</subject><subject>Cell Line</subject><subject>Chromatin - genetics</subject><subject>chromatin remodeling</subject><subject>Chromosomal Proteins, Non-Histone</subject><subject>Chromosome Mapping</subject><subject>DNA Helicases</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>dosage compensation</subject><subject>Dosage Compensation, Genetic</subject><subject>Drosophila</subject><subject>Drosophila Proteins</subject><subject>Exons</subject><subject>Gene Expression</subject><subject>Macromolecular Substances</subject><subject>Male</subject><subject>Models, Genetic</subject><subject>MSL protein</subject><subject>non-coding RNAs</subject><subject>Nuclear Proteins - genetics</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>RNA Helicases - metabolism</subject><subject>RNA, Messenger - biosynthesis</subject><subject>roX1 gene</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Transgenes</subject><subject>X Chromosome - genetics</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkTtz1DAUhTUMDFkCNRWMKjrv6mHrUVCEJIRHeBRhYGg0in29q8W2HMmbZP89Mt7ZQEMqjXS_c--5Ogg9p2ROieYLaC_9esHIXM8Z4-IBmtFckIwRWTxEM8IEzXKq9AF6EuOaEFIoSR-jA0o5p4XSM3R1FKMvnR2c77DtKhz7ALZy3RL7Gg8rwCfBR9-vXGNx5aNdAi5920MXJ814aeAW18G3OCEulgEGwMH_oLhcpdfEdRi6IWxxdAM8RY9q20R4tjsP0be3pxfH77LzL2fvj4_Os7IQmmcsp1YwK5UUQuaWCymY0jXTpCZVIanUecW1IoJIqUomuWXU1rnQOpegCsYP0eupb7-5bKEqRwe2MX1wrQ1b460z_1Y6tzJLf20oK1hOkv7VTh_81QbiYNq0GzSN7cBvopFEUa6UvBekUgnOCU_gYgLL9KUxQL03Q4kZ4zR_4jSMGG3GOJPi5d873PG7_BKgJuDGNbC9r585_fTmgyw0l2x0QyZpSjzFDcGs_SZ0KZL_2HkxSTo7bALsx921zKa6iwPc7ss2_DJCclmY75_PzM-Lk68fiaBG8d_tCdd2</recordid><startdate>20010501</startdate><enddate>20010501</enddate><creator>Kageyama, Y.</creator><creator>Mengus, G.</creator><creator>Gilfillan, G.</creator><creator>Kennedy, H. G.</creator><creator>Stuckenholz, C.</creator><creator>Kelley, R. L.</creator><creator>Becker, P. B.</creator><creator>Kuroda, M. I.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7TM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010501</creationdate><title>Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site</title><author>Kageyama, Y. ; Mengus, G. ; Gilfillan, G. ; Kennedy, H. G. ; Stuckenholz, C. ; Kelley, R. L. ; Becker, P. B. ; Kuroda, M. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5693-241a62a7876674a3676289f290f0d571794d398060778c273a21af469947e8523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Cell Line</topic><topic>Chromatin - genetics</topic><topic>chromatin remodeling</topic><topic>Chromosomal Proteins, Non-Histone</topic><topic>Chromosome Mapping</topic><topic>DNA Helicases</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>dosage compensation</topic><topic>Dosage Compensation, Genetic</topic><topic>Drosophila</topic><topic>Drosophila Proteins</topic><topic>Exons</topic><topic>Gene Expression</topic><topic>Macromolecular Substances</topic><topic>Male</topic><topic>Models, Genetic</topic><topic>MSL protein</topic><topic>non-coding RNAs</topic><topic>Nuclear Proteins - genetics</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>RNA Helicases - metabolism</topic><topic>RNA, Messenger - biosynthesis</topic><topic>roX1 gene</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Transgenes</topic><topic>X Chromosome - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kageyama, Y.</creatorcontrib><creatorcontrib>Mengus, G.</creatorcontrib><creatorcontrib>Gilfillan, G.</creatorcontrib><creatorcontrib>Kennedy, H. G.</creatorcontrib><creatorcontrib>Stuckenholz, C.</creatorcontrib><creatorcontrib>Kelley, R. L.</creatorcontrib><creatorcontrib>Becker, P. B.</creatorcontrib><creatorcontrib>Kuroda, M. I.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kageyama, Y.</au><au>Mengus, G.</au><au>Gilfillan, G.</au><au>Kennedy, H. G.</au><au>Stuckenholz, C.</au><au>Kelley, R. L.</au><au>Becker, P. B.</au><au>Kuroda, M. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-05-01</date><risdate>2001</risdate><volume>20</volume><issue>9</issue><spage>2236</spage><epage>2245</epage><pages>2236-2245</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>In Drosophila , dosage compensation is controlled by the male‐specific lethal (MSL) complex consisting of MSL proteins and roX RNAs. The MSL complex is specifically localized on the male X chromosome to increase its expression ∼2‐fold. We recently proposed a model for the targeted assembly of the MSL complex, in which initial binding occurs at ∼35 dispersed chromatin entry sites, followed by spreading in cis into flanking regions. Here, we analyze one of the chromatin entry sites, the roX1 gene, to determine which sequences are sufficient to recruit the MSL complex. We found association and spreading of the MSL complex from roX1 transgenes in the absence of detectable roX1 RNA synthesis from the transgene. We mapped the recruitment activity to a 217 bp roX1 fragment that shows male‐specific DNase hypersensitivity and can be preferentially cross‐linked in vivo to the MSL complex. When inserted on autosomes, this small roX1 segment is sufficient to produce an ectopic chromatin entry site that can nucleate binding and spreading of the MSL complex hundreds of kilobases into neighboring regions.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11331589</pmid><doi>10.1093/emboj/20.9.2236</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-05, Vol.20 (9), p.2236-2245
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125240
source PubMed Central (Open access); MEDLINE; Wiley Online Library Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Animals
Cell Line
Chromatin - genetics
chromatin remodeling
Chromosomal Proteins, Non-Histone
Chromosome Mapping
DNA Helicases
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
dosage compensation
Dosage Compensation, Genetic
Drosophila
Drosophila Proteins
Exons
Gene Expression
Macromolecular Substances
Male
Models, Genetic
MSL protein
non-coding RNAs
Nuclear Proteins - genetics
Repressor Proteins - genetics
Repressor Proteins - metabolism
RNA Helicases - metabolism
RNA, Messenger - biosynthesis
roX1 gene
Saccharomyces cerevisiae Proteins
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
Transgenes
X Chromosome - genetics
title Association and spreading of the Drosophila dosage compensation complex from a discrete roX1 chromatin entry site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20and%20spreading%20of%20the%20Drosophila%20dosage%20compensation%20complex%20from%20a%20discrete%20roX1%20chromatin%20entry%20site&rft.jtitle=The%20EMBO%20journal&rft.au=Kageyama,%20Y.&rft.date=2001-05-01&rft.volume=20&rft.issue=9&rft.spage=2236&rft.epage=2245&rft.pages=2236-2245&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.1093/emboj/20.9.2236&rft_dat=%3Cproquest_pubme%3E17863303%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17863303&rft_id=info:pmid/11331589&rfr_iscdi=true