Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A

Proton transfer in biological systems is thought to often proceed through hydrogen-bonded chains of water molecules. The ion channel, gramicidin A (gA), houses within its helical structure just such a chain. Using the density functional theory based ab initio molecular dynamics Car-Parrinello method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1996-09, Vol.71 (3), p.1172-1178
Hauptverfasser: Sagnella, D.E., Laasonen, K., Klein, M.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1178
container_issue 3
container_start_page 1172
container_title Biophysical journal
container_volume 71
creator Sagnella, D.E.
Laasonen, K.
Klein, M.L.
description Proton transfer in biological systems is thought to often proceed through hydrogen-bonded chains of water molecules. The ion channel, gramicidin A (gA), houses within its helical structure just such a chain. Using the density functional theory based ab initio molecular dynamics Car-Parrinello method, the structure and dynamics of proton diffusion through a polyglycine analog of the gA ion channel has been investigated. In the channel, a proton, which is initially present as hydronium (H3O+), rapidly forms a strong hydrogen bond with a nearest neighbor water, yielding a transient H5O2+ complex. As in bulk water, strong hydrogen bonding of this complex to a second neighbor solvation shell is required for proton transfer to occur. Within gA, this second neighbor shell included not only a channel water molecule but also a carbonyl of the channel backbone. The present calculations suggest a transport mechanism in which a priori carbonyl solvation is a requirement for proton transfer.
doi_str_mv 10.1016/S0006-3495(96)79321-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1233584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349596793219</els_id><sourcerecordid>78449234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-d9c95170a3c242a6eb3dd3f1910c90eb44af01cee6a234fb8be23409931833d13</originalsourceid><addsrcrecordid>eNqFUU1r2zAYFqOly7r9hIJOozu4kyzZsS4doWztoNBDu7OQpdeJhixlkh3wv6-chNCdenoOz9fL-yB0RckNJbT-_kwIqQvGRXUt6m9LwUpaiA9oQSteFoQ09RlanCQf0aeU_hJCy4rQC3TRNEsmBF2gftVi6-1gA-6DAz06FbGZvOqtTjgNo5lw6PA2hiF4PETlUwcxW7DC2-CmtZu09YCVVy6sZ-mwAWyzVm-U9-DwOs5Z1mTL6jM675RL8OWIl-jPr58vdw_F49P977vVY6GrshkKI7So6JIopkteqhpaZgzrqKBECwIt56ojVAPUqmS8a5sWMhIhGG0YM5RdottD7nZsezAafL7cyW20vYqTDMrK_xlvN3IddpKWjFUNzwFfjwEx_BshDbK3SYNzykMYk1w2nIvcmYXVQahjSClCdyqhRM47yf1Och5Bilrud5Ii-67eXnhyHYfJ_I8DD_lNOwtRJm3BazA2gh6kCfadhldtLKTx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>78449234</pqid></control><display><type>article</type><title>Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Access via ScienceDirect (Elsevier)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Sagnella, D.E. ; Laasonen, K. ; Klein, M.L.</creator><creatorcontrib>Sagnella, D.E. ; Laasonen, K. ; Klein, M.L.</creatorcontrib><description>Proton transfer in biological systems is thought to often proceed through hydrogen-bonded chains of water molecules. The ion channel, gramicidin A (gA), houses within its helical structure just such a chain. Using the density functional theory based ab initio molecular dynamics Car-Parrinello method, the structure and dynamics of proton diffusion through a polyglycine analog of the gA ion channel has been investigated. In the channel, a proton, which is initially present as hydronium (H3O+), rapidly forms a strong hydrogen bond with a nearest neighbor water, yielding a transient H5O2+ complex. As in bulk water, strong hydrogen bonding of this complex to a second neighbor solvation shell is required for proton transfer to occur. Within gA, this second neighbor shell included not only a channel water molecule but also a carbonyl of the channel backbone. The present calculations suggest a transport mechanism in which a priori carbonyl solvation is a requirement for proton transfer.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(96)79321-9</identifier><identifier>PMID: 8873991</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysical Phenomena ; Biophysics ; Computer Simulation ; Gramicidin - analogs &amp; derivatives ; Gramicidin - chemistry ; Hydrogen Bonding ; In Vitro Techniques ; Ion Channels - chemistry ; Models, Molecular ; Molecular Structure ; Peptides - chemistry ; Protein Conformation ; Protein Structure, Secondary ; Protons ; Thermodynamics ; Water - chemistry</subject><ispartof>Biophysical journal, 1996-09, Vol.71 (3), p.1172-1178</ispartof><rights>1996 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-d9c95170a3c242a6eb3dd3f1910c90eb44af01cee6a234fb8be23409931833d13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1233584/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0006-3495(96)79321-9$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3550,27924,27925,45995,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8873991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sagnella, D.E.</creatorcontrib><creatorcontrib>Laasonen, K.</creatorcontrib><creatorcontrib>Klein, M.L.</creatorcontrib><title>Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Proton transfer in biological systems is thought to often proceed through hydrogen-bonded chains of water molecules. The ion channel, gramicidin A (gA), houses within its helical structure just such a chain. Using the density functional theory based ab initio molecular dynamics Car-Parrinello method, the structure and dynamics of proton diffusion through a polyglycine analog of the gA ion channel has been investigated. In the channel, a proton, which is initially present as hydronium (H3O+), rapidly forms a strong hydrogen bond with a nearest neighbor water, yielding a transient H5O2+ complex. As in bulk water, strong hydrogen bonding of this complex to a second neighbor solvation shell is required for proton transfer to occur. Within gA, this second neighbor shell included not only a channel water molecule but also a carbonyl of the channel backbone. The present calculations suggest a transport mechanism in which a priori carbonyl solvation is a requirement for proton transfer.</description><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Computer Simulation</subject><subject>Gramicidin - analogs &amp; derivatives</subject><subject>Gramicidin - chemistry</subject><subject>Hydrogen Bonding</subject><subject>In Vitro Techniques</subject><subject>Ion Channels - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular Structure</subject><subject>Peptides - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Protons</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1r2zAYFqOly7r9hIJOozu4kyzZsS4doWztoNBDu7OQpdeJhixlkh3wv6-chNCdenoOz9fL-yB0RckNJbT-_kwIqQvGRXUt6m9LwUpaiA9oQSteFoQ09RlanCQf0aeU_hJCy4rQC3TRNEsmBF2gftVi6-1gA-6DAz06FbGZvOqtTjgNo5lw6PA2hiF4PETlUwcxW7DC2-CmtZu09YCVVy6sZ-mwAWyzVm-U9-DwOs5Z1mTL6jM675RL8OWIl-jPr58vdw_F49P977vVY6GrshkKI7So6JIopkteqhpaZgzrqKBECwIt56ojVAPUqmS8a5sWMhIhGG0YM5RdottD7nZsezAafL7cyW20vYqTDMrK_xlvN3IddpKWjFUNzwFfjwEx_BshDbK3SYNzykMYk1w2nIvcmYXVQahjSClCdyqhRM47yf1Och5Bilrud5Ii-67eXnhyHYfJ_I8DD_lNOwtRJm3BazA2gh6kCfadhldtLKTx</recordid><startdate>19960901</startdate><enddate>19960901</enddate><creator>Sagnella, D.E.</creator><creator>Laasonen, K.</creator><creator>Klein, M.L.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960901</creationdate><title>Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A</title><author>Sagnella, D.E. ; Laasonen, K. ; Klein, M.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-d9c95170a3c242a6eb3dd3f1910c90eb44af01cee6a234fb8be23409931833d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Computer Simulation</topic><topic>Gramicidin - analogs &amp; derivatives</topic><topic>Gramicidin - chemistry</topic><topic>Hydrogen Bonding</topic><topic>In Vitro Techniques</topic><topic>Ion Channels - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular Structure</topic><topic>Peptides - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Protons</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sagnella, D.E.</creatorcontrib><creatorcontrib>Laasonen, K.</creatorcontrib><creatorcontrib>Klein, M.L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sagnella, D.E.</au><au>Laasonen, K.</au><au>Klein, M.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1996-09-01</date><risdate>1996</risdate><volume>71</volume><issue>3</issue><spage>1172</spage><epage>1178</epage><pages>1172-1178</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Proton transfer in biological systems is thought to often proceed through hydrogen-bonded chains of water molecules. The ion channel, gramicidin A (gA), houses within its helical structure just such a chain. Using the density functional theory based ab initio molecular dynamics Car-Parrinello method, the structure and dynamics of proton diffusion through a polyglycine analog of the gA ion channel has been investigated. In the channel, a proton, which is initially present as hydronium (H3O+), rapidly forms a strong hydrogen bond with a nearest neighbor water, yielding a transient H5O2+ complex. As in bulk water, strong hydrogen bonding of this complex to a second neighbor solvation shell is required for proton transfer to occur. Within gA, this second neighbor shell included not only a channel water molecule but also a carbonyl of the channel backbone. The present calculations suggest a transport mechanism in which a priori carbonyl solvation is a requirement for proton transfer.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8873991</pmid><doi>10.1016/S0006-3495(96)79321-9</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1996-09, Vol.71 (3), p.1172-1178
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1233584
source MEDLINE; Cell Press Free Archives; Access via ScienceDirect (Elsevier); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Biophysical Phenomena
Biophysics
Computer Simulation
Gramicidin - analogs & derivatives
Gramicidin - chemistry
Hydrogen Bonding
In Vitro Techniques
Ion Channels - chemistry
Models, Molecular
Molecular Structure
Peptides - chemistry
Protein Conformation
Protein Structure, Secondary
Protons
Thermodynamics
Water - chemistry
title Ab initio molecular dynamics study of proton transfer in a polyglycine analog of the ion channel gramicidin A
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A36%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ab%20initio%20molecular%20dynamics%20study%20of%20proton%20transfer%20in%20a%20polyglycine%20analog%20of%20the%20ion%20channel%20gramicidin%20A&rft.jtitle=Biophysical%20journal&rft.au=Sagnella,%20D.E.&rft.date=1996-09-01&rft.volume=71&rft.issue=3&rft.spage=1172&rft.epage=1178&rft.pages=1172-1178&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(96)79321-9&rft_dat=%3Cproquest_pubme%3E78449234%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=78449234&rft_id=info:pmid/8873991&rft_els_id=S0006349596793219&rfr_iscdi=true