Mechanisms of the interaction of nitroxyl with mitochondria

It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reactio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 2004-04, Vol.379 (Pt 2), p.359-366
Hauptverfasser: Shiva, Sruti, Crawford, Jack H, Ramachandran, Anup, Ceaser, Erin K, Hillson, Tess, Brookes, Paul S, Patel, Rakesh P, Darley-Usmar, Victor M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue Pt 2
container_start_page 359
container_title Biochemical journal
container_volume 379
creator Shiva, Sruti
Crawford, Jack H
Ramachandran, Anup
Ceaser, Erin K
Hillson, Tess
Brookes, Paul S
Patel, Rakesh P
Darley-Usmar, Victor M
description It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reaction of NO* with superoxide, irreversibly inhibits several of the respiratory complexes. However, little is known about the effects of HNO (nitroxyl) on mitochondrial function. This is especially important, since HNO has been shown to be more cytotoxic than NO*, may potentially be generated in vivo, and elicits biological responses with some of the characteristics of NO and peroxynitrite. In the present study, we present evidence that isolated mitochondria, in the absence or presence of substrate, convert HNO into NO* by a process that is dependent on mitochondrial concentration as well as the concentration of the HNO donor Angeli's salt. In addition, HNO is able to inhibit mitochondrial respiration through the inhibition of complexes I and II, most probably via modification of specific cysteine residues in the proteins. Using a proteomics approach, extensive modification of mitochondrial protein thiols was demonstrated. From these data it is evident that HNO interacts with mitochondria through mechanisms distinct from those of either NO* or peroxynitrite, including the generation of NO*, the modification of thiols and the inhibition of complexes I and II.
doi_str_mv 10.1042/BJ20031758
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1224084</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>71788957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-9cf5cf8f92aa8e7fea5a77d011567b47b58ad9bb23bbc9081cc09973b9eb9b883</originalsourceid><addsrcrecordid>eNpVkE1LAzEQhoMotlYv_gDZkwdhdZLNNgmCoMVPKl70HJI066bsbmqSqv33trR-nQbeeXhneBA6xHCKgZKzqwcCUGBW8i3Ux5RBzhnh26gPZEjzIRDcQ3sxTgEwBQq7qLeESDGEso_OH62pVediGzNfZam2meuSDcok57tV1LkU_OeiyT5cqrPWJW9q302CU_top1JNtAebOUAvN9fPo7t8_HR7P7oc56ZgNOXCVKWpeCWIUtyyyqpSMTYBjMsh05TpkquJ0JoUWhsBHBsDQrBCC6uF5rwYoIt172yuWzsxtktBNXIWXKvCQnrl5P9N52r56t8lJoQCp8uC401B8G9zG5NsXTS2aVRn_TxKhhnnomRL8GQNmuBjDLb6OYJBrlxLPf12vYSP_r71i27kFl8l93tI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>71788957</pqid></control><display><type>article</type><title>Mechanisms of the interaction of nitroxyl with mitochondria</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Shiva, Sruti ; Crawford, Jack H ; Ramachandran, Anup ; Ceaser, Erin K ; Hillson, Tess ; Brookes, Paul S ; Patel, Rakesh P ; Darley-Usmar, Victor M</creator><creatorcontrib>Shiva, Sruti ; Crawford, Jack H ; Ramachandran, Anup ; Ceaser, Erin K ; Hillson, Tess ; Brookes, Paul S ; Patel, Rakesh P ; Darley-Usmar, Victor M</creatorcontrib><description>It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reaction of NO* with superoxide, irreversibly inhibits several of the respiratory complexes. However, little is known about the effects of HNO (nitroxyl) on mitochondrial function. This is especially important, since HNO has been shown to be more cytotoxic than NO*, may potentially be generated in vivo, and elicits biological responses with some of the characteristics of NO and peroxynitrite. In the present study, we present evidence that isolated mitochondria, in the absence or presence of substrate, convert HNO into NO* by a process that is dependent on mitochondrial concentration as well as the concentration of the HNO donor Angeli's salt. In addition, HNO is able to inhibit mitochondrial respiration through the inhibition of complexes I and II, most probably via modification of specific cysteine residues in the proteins. Using a proteomics approach, extensive modification of mitochondrial protein thiols was demonstrated. From these data it is evident that HNO interacts with mitochondria through mechanisms distinct from those of either NO* or peroxynitrite, including the generation of NO*, the modification of thiols and the inhibition of complexes I and II.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/BJ20031758</identifier><identifier>PMID: 14723605</identifier><language>eng</language><publisher>England</publisher><subject>Animals ; Cell Respiration - drug effects ; Cysteine - metabolism ; Electron Transport Complex II - drug effects ; Glutathione - metabolism ; Glutathione - pharmacology ; Male ; Malonates - pharmacology ; Mitochondria - drug effects ; Mitochondria - metabolism ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - metabolism ; Nitric Oxide - biosynthesis ; Nitrites - pharmacology ; Nitrogen Oxides - metabolism ; Nitrogen Oxides - pharmacology ; Rats ; Rats, Sprague-Dawley</subject><ispartof>Biochemical journal, 2004-04, Vol.379 (Pt 2), p.359-366</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-9cf5cf8f92aa8e7fea5a77d011567b47b58ad9bb23bbc9081cc09973b9eb9b883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224084/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1224084/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14723605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiva, Sruti</creatorcontrib><creatorcontrib>Crawford, Jack H</creatorcontrib><creatorcontrib>Ramachandran, Anup</creatorcontrib><creatorcontrib>Ceaser, Erin K</creatorcontrib><creatorcontrib>Hillson, Tess</creatorcontrib><creatorcontrib>Brookes, Paul S</creatorcontrib><creatorcontrib>Patel, Rakesh P</creatorcontrib><creatorcontrib>Darley-Usmar, Victor M</creatorcontrib><title>Mechanisms of the interaction of nitroxyl with mitochondria</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reaction of NO* with superoxide, irreversibly inhibits several of the respiratory complexes. However, little is known about the effects of HNO (nitroxyl) on mitochondrial function. This is especially important, since HNO has been shown to be more cytotoxic than NO*, may potentially be generated in vivo, and elicits biological responses with some of the characteristics of NO and peroxynitrite. In the present study, we present evidence that isolated mitochondria, in the absence or presence of substrate, convert HNO into NO* by a process that is dependent on mitochondrial concentration as well as the concentration of the HNO donor Angeli's salt. In addition, HNO is able to inhibit mitochondrial respiration through the inhibition of complexes I and II, most probably via modification of specific cysteine residues in the proteins. Using a proteomics approach, extensive modification of mitochondrial protein thiols was demonstrated. From these data it is evident that HNO interacts with mitochondria through mechanisms distinct from those of either NO* or peroxynitrite, including the generation of NO*, the modification of thiols and the inhibition of complexes I and II.</description><subject>Animals</subject><subject>Cell Respiration - drug effects</subject><subject>Cysteine - metabolism</subject><subject>Electron Transport Complex II - drug effects</subject><subject>Glutathione - metabolism</subject><subject>Glutathione - pharmacology</subject><subject>Male</subject><subject>Malonates - pharmacology</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Nitric Oxide - biosynthesis</subject><subject>Nitrites - pharmacology</subject><subject>Nitrogen Oxides - metabolism</subject><subject>Nitrogen Oxides - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkE1LAzEQhoMotlYv_gDZkwdhdZLNNgmCoMVPKl70HJI066bsbmqSqv33trR-nQbeeXhneBA6xHCKgZKzqwcCUGBW8i3Ux5RBzhnh26gPZEjzIRDcQ3sxTgEwBQq7qLeESDGEso_OH62pVediGzNfZam2meuSDcok57tV1LkU_OeiyT5cqrPWJW9q302CU_top1JNtAebOUAvN9fPo7t8_HR7P7oc56ZgNOXCVKWpeCWIUtyyyqpSMTYBjMsh05TpkquJ0JoUWhsBHBsDQrBCC6uF5rwYoIt172yuWzsxtktBNXIWXKvCQnrl5P9N52r56t8lJoQCp8uC401B8G9zG5NsXTS2aVRn_TxKhhnnomRL8GQNmuBjDLb6OYJBrlxLPf12vYSP_r71i27kFl8l93tI</recordid><startdate>20040415</startdate><enddate>20040415</enddate><creator>Shiva, Sruti</creator><creator>Crawford, Jack H</creator><creator>Ramachandran, Anup</creator><creator>Ceaser, Erin K</creator><creator>Hillson, Tess</creator><creator>Brookes, Paul S</creator><creator>Patel, Rakesh P</creator><creator>Darley-Usmar, Victor M</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040415</creationdate><title>Mechanisms of the interaction of nitroxyl with mitochondria</title><author>Shiva, Sruti ; Crawford, Jack H ; Ramachandran, Anup ; Ceaser, Erin K ; Hillson, Tess ; Brookes, Paul S ; Patel, Rakesh P ; Darley-Usmar, Victor M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-9cf5cf8f92aa8e7fea5a77d011567b47b58ad9bb23bbc9081cc09973b9eb9b883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Cell Respiration - drug effects</topic><topic>Cysteine - metabolism</topic><topic>Electron Transport Complex II - drug effects</topic><topic>Glutathione - metabolism</topic><topic>Glutathione - pharmacology</topic><topic>Male</topic><topic>Malonates - pharmacology</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Nitric Oxide - biosynthesis</topic><topic>Nitrites - pharmacology</topic><topic>Nitrogen Oxides - metabolism</topic><topic>Nitrogen Oxides - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiva, Sruti</creatorcontrib><creatorcontrib>Crawford, Jack H</creatorcontrib><creatorcontrib>Ramachandran, Anup</creatorcontrib><creatorcontrib>Ceaser, Erin K</creatorcontrib><creatorcontrib>Hillson, Tess</creatorcontrib><creatorcontrib>Brookes, Paul S</creatorcontrib><creatorcontrib>Patel, Rakesh P</creatorcontrib><creatorcontrib>Darley-Usmar, Victor M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiva, Sruti</au><au>Crawford, Jack H</au><au>Ramachandran, Anup</au><au>Ceaser, Erin K</au><au>Hillson, Tess</au><au>Brookes, Paul S</au><au>Patel, Rakesh P</au><au>Darley-Usmar, Victor M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of the interaction of nitroxyl with mitochondria</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2004-04-15</date><risdate>2004</risdate><volume>379</volume><issue>Pt 2</issue><spage>359</spage><epage>366</epage><pages>359-366</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>It is now thought that NO* (nitric oxide) and its redox congeners may play a role in the physiological regulation of mitochondrial function. The inhibition of cytochrome c oxidase by NO* is characterized as being reversible and oxygen dependent. In contrast, peroxynitrite, the product of the reaction of NO* with superoxide, irreversibly inhibits several of the respiratory complexes. However, little is known about the effects of HNO (nitroxyl) on mitochondrial function. This is especially important, since HNO has been shown to be more cytotoxic than NO*, may potentially be generated in vivo, and elicits biological responses with some of the characteristics of NO and peroxynitrite. In the present study, we present evidence that isolated mitochondria, in the absence or presence of substrate, convert HNO into NO* by a process that is dependent on mitochondrial concentration as well as the concentration of the HNO donor Angeli's salt. In addition, HNO is able to inhibit mitochondrial respiration through the inhibition of complexes I and II, most probably via modification of specific cysteine residues in the proteins. Using a proteomics approach, extensive modification of mitochondrial protein thiols was demonstrated. From these data it is evident that HNO interacts with mitochondria through mechanisms distinct from those of either NO* or peroxynitrite, including the generation of NO*, the modification of thiols and the inhibition of complexes I and II.</abstract><cop>England</cop><pmid>14723605</pmid><doi>10.1042/BJ20031758</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0264-6021
ispartof Biochemical journal, 2004-04, Vol.379 (Pt 2), p.359-366
issn 0264-6021
1470-8728
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1224084
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
Cell Respiration - drug effects
Cysteine - metabolism
Electron Transport Complex II - drug effects
Glutathione - metabolism
Glutathione - pharmacology
Male
Malonates - pharmacology
Mitochondria - drug effects
Mitochondria - metabolism
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - metabolism
Nitric Oxide - biosynthesis
Nitrites - pharmacology
Nitrogen Oxides - metabolism
Nitrogen Oxides - pharmacology
Rats
Rats, Sprague-Dawley
title Mechanisms of the interaction of nitroxyl with mitochondria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T22%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20the%20interaction%20of%20nitroxyl%20with%20mitochondria&rft.jtitle=Biochemical%20journal&rft.au=Shiva,%20Sruti&rft.date=2004-04-15&rft.volume=379&rft.issue=Pt%202&rft.spage=359&rft.epage=366&rft.pages=359-366&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/BJ20031758&rft_dat=%3Cproquest_pubme%3E71788957%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=71788957&rft_id=info:pmid/14723605&rfr_iscdi=true