Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant
The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of hi...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2001-05, Vol.356 (Pt 1), p.19-30 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 30 |
---|---|
container_issue | Pt 1 |
container_start_page | 19 |
container_title | Biochemical journal |
container_volume | 356 |
creator | Becker, D Braet, C Brumer , 3rd, H Claeyssens, M Divne, C Fagerström, B R Harris, M Jones, T A Kleywegt, G J Koivula, A Mahdi, S Piens, K Sinnott, M L Ståhlberg, J Teeri, T T Underwood, M Wohlfahrt, G |
description | The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds. |
doi_str_mv | 10.1042/0264-6021:3560019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1221808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70824638</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3419-dd3fff38a7c29dd7ad5f806c4745399e4af695cbaffb73484f9a9e4a30368f873</originalsourceid><addsrcrecordid>eNqFks1u1DAUhS1ERYfSB2CDvGIX4r_YThdIo2HaQRqJBUO3lhPbE4MTD3ZSaZ6KV2RCR4WuWF35nnM_2b4HgLcYfcCIkRIRzgqOCL6hFUcI1y_AAjOBCimIfAkWT_oleJ3z95ODIYZegUuMKeWckgX4tR72frA2-WEPo4Ma7sOxjdkbnS281b0PRyhga0OIjY_d0aQYZmmMsI_JQh1-6HAiwMMGxsPo-6m_gWP359zYTj_4OKWZvEu-7aKxqdcwWZuthysbxBLqwUA_ZrgmhH4t4ZIQtim3hFT35Y4Qviw_EU7uYD-NehjfgAunQ7bX53oFvt2ud6tNsf1y93m13BYtZbgujKHOOSq1aEltjNCmchLxlglW0bq2TDteV22jnWsEZZK5Ws9diiiXTgp6BT4-cg9T01vT2mFMOqhD8r1ORxW1V8-VwXdqHx8UJgRLJE-A92dAij8nm0fV-zx_ox5snLISSBLG6f-NWNQIYz4b8aOxTTHnZN3TbTBScx7UvG8171ud83CaeffvM_5OnANAfwPqa6_i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17901168</pqid></control><display><type>article</type><title>Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Becker, D ; Braet, C ; Brumer , 3rd, H ; Claeyssens, M ; Divne, C ; Fagerström, B R ; Harris, M ; Jones, T A ; Kleywegt, G J ; Koivula, A ; Mahdi, S ; Piens, K ; Sinnott, M L ; Ståhlberg, J ; Teeri, T T ; Underwood, M ; Wohlfahrt, G</creator><creatorcontrib>Becker, D ; Braet, C ; Brumer , 3rd, H ; Claeyssens, M ; Divne, C ; Fagerström, B R ; Harris, M ; Jones, T A ; Kleywegt, G J ; Koivula, A ; Mahdi, S ; Piens, K ; Sinnott, M L ; Ståhlberg, J ; Teeri, T T ; Underwood, M ; Wohlfahrt, G</creatorcontrib><description>The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/0264-6021:3560019</identifier><identifier>PMID: 11336632</identifier><language>eng</language><publisher>England</publisher><subject>2-chloro-4-nitrophenyl lactoside ; 3,4-Dinitrophenyl lactoside ; 7-cellobiohydrolase ; Alkalies ; Catalytic Domain - genetics ; Cel7A protein ; cellobiose ; Cellobiose - analogs & derivatives ; Cellulase - chemistry ; Cellulase - genetics ; Cellulase - metabolism ; Cellulose - metabolism ; Cellulose 1,4-beta-Cellobiosidase ; Crystallography, X-Ray ; endoglucanase ; endoglucanase Cel7B ; Enzyme Stability ; glycosidase ; Histidine ; Humicola insolens ; Hydrogen-Ion Concentration ; Kinetics ; Models, Molecular ; Mutation ; Protein Engineering ; Trichoderma - enzymology ; Trichoderma - genetics ; Trichoderma reesei</subject><ispartof>Biochemical journal, 2001-05, Vol.356 (Pt 1), p.19-30</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3419-dd3fff38a7c29dd7ad5f806c4745399e4af695cbaffb73484f9a9e4a30368f873</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221808/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1221808/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11336632$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, D</creatorcontrib><creatorcontrib>Braet, C</creatorcontrib><creatorcontrib>Brumer , 3rd, H</creatorcontrib><creatorcontrib>Claeyssens, M</creatorcontrib><creatorcontrib>Divne, C</creatorcontrib><creatorcontrib>Fagerström, B R</creatorcontrib><creatorcontrib>Harris, M</creatorcontrib><creatorcontrib>Jones, T A</creatorcontrib><creatorcontrib>Kleywegt, G J</creatorcontrib><creatorcontrib>Koivula, A</creatorcontrib><creatorcontrib>Mahdi, S</creatorcontrib><creatorcontrib>Piens, K</creatorcontrib><creatorcontrib>Sinnott, M L</creatorcontrib><creatorcontrib>Ståhlberg, J</creatorcontrib><creatorcontrib>Teeri, T T</creatorcontrib><creatorcontrib>Underwood, M</creatorcontrib><creatorcontrib>Wohlfahrt, G</creatorcontrib><title>Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.</description><subject>2-chloro-4-nitrophenyl lactoside</subject><subject>3,4-Dinitrophenyl lactoside</subject><subject>7-cellobiohydrolase</subject><subject>Alkalies</subject><subject>Catalytic Domain - genetics</subject><subject>Cel7A protein</subject><subject>cellobiose</subject><subject>Cellobiose - analogs & derivatives</subject><subject>Cellulase - chemistry</subject><subject>Cellulase - genetics</subject><subject>Cellulase - metabolism</subject><subject>Cellulose - metabolism</subject><subject>Cellulose 1,4-beta-Cellobiosidase</subject><subject>Crystallography, X-Ray</subject><subject>endoglucanase</subject><subject>endoglucanase Cel7B</subject><subject>Enzyme Stability</subject><subject>glycosidase</subject><subject>Histidine</subject><subject>Humicola insolens</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Models, Molecular</subject><subject>Mutation</subject><subject>Protein Engineering</subject><subject>Trichoderma - enzymology</subject><subject>Trichoderma - genetics</subject><subject>Trichoderma reesei</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhS1ERYfSB2CDvGIX4r_YThdIo2HaQRqJBUO3lhPbE4MTD3ZSaZ6KV2RCR4WuWF35nnM_2b4HgLcYfcCIkRIRzgqOCL6hFUcI1y_AAjOBCimIfAkWT_oleJ3z95ODIYZegUuMKeWckgX4tR72frA2-WEPo4Ma7sOxjdkbnS281b0PRyhga0OIjY_d0aQYZmmMsI_JQh1-6HAiwMMGxsPo-6m_gWP359zYTj_4OKWZvEu-7aKxqdcwWZuthysbxBLqwUA_ZrgmhH4t4ZIQtim3hFT35Y4Qviw_EU7uYD-NehjfgAunQ7bX53oFvt2ud6tNsf1y93m13BYtZbgujKHOOSq1aEltjNCmchLxlglW0bq2TDteV22jnWsEZZK5Ws9diiiXTgp6BT4-cg9T01vT2mFMOqhD8r1ORxW1V8-VwXdqHx8UJgRLJE-A92dAij8nm0fV-zx_ox5snLISSBLG6f-NWNQIYz4b8aOxTTHnZN3TbTBScx7UvG8171ud83CaeffvM_5OnANAfwPqa6_i</recordid><startdate>20010515</startdate><enddate>20010515</enddate><creator>Becker, D</creator><creator>Braet, C</creator><creator>Brumer , 3rd, H</creator><creator>Claeyssens, M</creator><creator>Divne, C</creator><creator>Fagerström, B R</creator><creator>Harris, M</creator><creator>Jones, T A</creator><creator>Kleywegt, G J</creator><creator>Koivula, A</creator><creator>Mahdi, S</creator><creator>Piens, K</creator><creator>Sinnott, M L</creator><creator>Ståhlberg, J</creator><creator>Teeri, T T</creator><creator>Underwood, M</creator><creator>Wohlfahrt, G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20010515</creationdate><title>Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant</title><author>Becker, D ; Braet, C ; Brumer , 3rd, H ; Claeyssens, M ; Divne, C ; Fagerström, B R ; Harris, M ; Jones, T A ; Kleywegt, G J ; Koivula, A ; Mahdi, S ; Piens, K ; Sinnott, M L ; Ståhlberg, J ; Teeri, T T ; Underwood, M ; Wohlfahrt, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3419-dd3fff38a7c29dd7ad5f806c4745399e4af695cbaffb73484f9a9e4a30368f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>2-chloro-4-nitrophenyl lactoside</topic><topic>3,4-Dinitrophenyl lactoside</topic><topic>7-cellobiohydrolase</topic><topic>Alkalies</topic><topic>Catalytic Domain - genetics</topic><topic>Cel7A protein</topic><topic>cellobiose</topic><topic>Cellobiose - analogs & derivatives</topic><topic>Cellulase - chemistry</topic><topic>Cellulase - genetics</topic><topic>Cellulase - metabolism</topic><topic>Cellulose - metabolism</topic><topic>Cellulose 1,4-beta-Cellobiosidase</topic><topic>Crystallography, X-Ray</topic><topic>endoglucanase</topic><topic>endoglucanase Cel7B</topic><topic>Enzyme Stability</topic><topic>glycosidase</topic><topic>Histidine</topic><topic>Humicola insolens</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Models, Molecular</topic><topic>Mutation</topic><topic>Protein Engineering</topic><topic>Trichoderma - enzymology</topic><topic>Trichoderma - genetics</topic><topic>Trichoderma reesei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, D</creatorcontrib><creatorcontrib>Braet, C</creatorcontrib><creatorcontrib>Brumer , 3rd, H</creatorcontrib><creatorcontrib>Claeyssens, M</creatorcontrib><creatorcontrib>Divne, C</creatorcontrib><creatorcontrib>Fagerström, B R</creatorcontrib><creatorcontrib>Harris, M</creatorcontrib><creatorcontrib>Jones, T A</creatorcontrib><creatorcontrib>Kleywegt, G J</creatorcontrib><creatorcontrib>Koivula, A</creatorcontrib><creatorcontrib>Mahdi, S</creatorcontrib><creatorcontrib>Piens, K</creatorcontrib><creatorcontrib>Sinnott, M L</creatorcontrib><creatorcontrib>Ståhlberg, J</creatorcontrib><creatorcontrib>Teeri, T T</creatorcontrib><creatorcontrib>Underwood, M</creatorcontrib><creatorcontrib>Wohlfahrt, G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, D</au><au>Braet, C</au><au>Brumer , 3rd, H</au><au>Claeyssens, M</au><au>Divne, C</au><au>Fagerström, B R</au><au>Harris, M</au><au>Jones, T A</au><au>Kleywegt, G J</au><au>Koivula, A</au><au>Mahdi, S</au><au>Piens, K</au><au>Sinnott, M L</au><au>Ståhlberg, J</au><au>Teeri, T T</au><au>Underwood, M</au><au>Wohlfahrt, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2001-05-15</date><risdate>2001</risdate><volume>356</volume><issue>Pt 1</issue><spage>19</spage><epage>30</epage><pages>19-30</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds.</abstract><cop>England</cop><pmid>11336632</pmid><doi>10.1042/0264-6021:3560019</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochemical journal, 2001-05, Vol.356 (Pt 1), p.19-30 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1221808 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | 2-chloro-4-nitrophenyl lactoside 3,4-Dinitrophenyl lactoside 7-cellobiohydrolase Alkalies Catalytic Domain - genetics Cel7A protein cellobiose Cellobiose - analogs & derivatives Cellulase - chemistry Cellulase - genetics Cellulase - metabolism Cellulose - metabolism Cellulose 1,4-beta-Cellobiosidase Crystallography, X-Ray endoglucanase endoglucanase Cel7B Enzyme Stability glycosidase Histidine Humicola insolens Hydrogen-Ion Concentration Kinetics Models, Molecular Mutation Protein Engineering Trichoderma - enzymology Trichoderma - genetics Trichoderma reesei |
title | Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T04%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20a%20glycosidase%20Family%207%20cellobiohydrolase%20to%20more%20alkaline%20pH%20optimum:%20the%20pH%20behaviour%20of%20Trichoderma%20reesei%20Cel7A%20and%20its%20E223S/%20A224H/L225V/T226A/D262G%20mutant&rft.jtitle=Biochemical%20journal&rft.au=Becker,%20D&rft.date=2001-05-15&rft.volume=356&rft.issue=Pt%201&rft.spage=19&rft.epage=30&rft.pages=19-30&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/0264-6021:3560019&rft_dat=%3Cproquest_pubme%3E70824638%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17901168&rft_id=info:pmid/11336632&rfr_iscdi=true |