The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells
Despite much progress in recent years, the precise signalling events triggered by the vascular-endothelial-growth-factor (VEGF) receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing receptor (KDR), are incompletely defined. Results obtained when Flt1 and KDR are individually...
Gespeichert in:
Veröffentlicht in: | Biochemical journal 2000-04, Vol.347 (Pt 2), p.501-509 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | Pt 2 |
container_start_page | 501 |
container_title | Biochemical journal |
container_volume | 347 |
creator | Warner, A J Lopez-Dee, J Knight, E L Feramisco, J R Prigent, S A |
description | Despite much progress in recent years, the precise signalling events triggered by the vascular-endothelial-growth-factor (VEGF) receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing receptor (KDR), are incompletely defined. Results obtained when Flt1 and KDR are individually expressed in fibroblasts or porcine aortic endothelial cells have not been entirely consistent with those observed in other endothelial cells expressing both receptors endogenously. It has also been difficult to demonstrate VEGF-induced phosphorylation of Flt1, which has led to speculation that KDR may be the more important receptor for the mitogenic action of VEGF on endothelial cells. In an attempt to identify physiologically important effectors which bind to KDR, we have screened a yeast two-hybrid mouse embryo library with the cytoplasmic domain of KDR. Here we describe the identification of the adaptor protein, Shc-like protein (Sck), as a binding partner for KDR. We demonstrate that this interaction requires phosphorylation of KDR, and identify the binding site for the Src-homology 2 (SH2) domain as tyrosine-1175 of KDR. We have also shown that the SH2 domain of Sck, but not that of Src-homology collagen protein (Shc), can precipitate phosphorylated KDR from VEGF-stimulated porcine aortic endothelial cells expressing KDR, and that an N-terminally truncated Sck protein can associate with KDR, in a phosphorylation-dependent fashion, when co-expressed in human embryonic kidney 293 cells. Furthermore, we demonstrate that in the two-hybrid assay, both Shc and Sck SH2 domains can associate with the related receptor Flt1. |
doi_str_mv | 10.1042/0264-6021:3470501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1220983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72541570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3101-f9ed8429a5f55d4eda69b297734be4a19426bc2d0b4324bc0d81fb737874a8853</originalsourceid><addsrcrecordid>eNpVkcFu1DAQhi1ERbeFB-CCfOJU07HjxA4HJFQKVFRCouVsOfakCThxsLMtPfPiJOyqKidbnvm_Gesj5CWHNxykOAVRSVaB4G8LqaAE_oRs-HJjWgn9lGwe6ofkKOcfAFyChGfkkIOSdaVhQ_5cd0ivOscSBjujp9bbaY6JTinO2I8n9Mr9PKFtTEOmlro4TAF_07t-7ui8RG9tdttgE8PRx-Uh9DawmxTv5o611q2khA7_Ib98-Eb7kc7JjrlFt05zGEJ-Tg5aGzK-2J_H5PvH8-uzz-zy66eLs_eXzBUcOGtr9FqK2pZtWXqJ3lZ1I2qlCtmgtLyWomqc8NDIQsjGgde8bVShtJJW67I4Ju923GnbDOgdjssqwUypH2y6N9H25v_K2HfmJt4aLgTUulgAr_eAFH9tMc9m6PP6BTti3GajRCl5qWBp5LtGl2LOCduHIRzMqs6sasyqxuzVLZlXj7d7lNi5Kv4C5EaWgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72541570</pqid></control><display><type>article</type><title>The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Warner, A J ; Lopez-Dee, J ; Knight, E L ; Feramisco, J R ; Prigent, S A</creator><creatorcontrib>Warner, A J ; Lopez-Dee, J ; Knight, E L ; Feramisco, J R ; Prigent, S A</creatorcontrib><description>Despite much progress in recent years, the precise signalling events triggered by the vascular-endothelial-growth-factor (VEGF) receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing receptor (KDR), are incompletely defined. Results obtained when Flt1 and KDR are individually expressed in fibroblasts or porcine aortic endothelial cells have not been entirely consistent with those observed in other endothelial cells expressing both receptors endogenously. It has also been difficult to demonstrate VEGF-induced phosphorylation of Flt1, which has led to speculation that KDR may be the more important receptor for the mitogenic action of VEGF on endothelial cells. In an attempt to identify physiologically important effectors which bind to KDR, we have screened a yeast two-hybrid mouse embryo library with the cytoplasmic domain of KDR. Here we describe the identification of the adaptor protein, Shc-like protein (Sck), as a binding partner for KDR. We demonstrate that this interaction requires phosphorylation of KDR, and identify the binding site for the Src-homology 2 (SH2) domain as tyrosine-1175 of KDR. We have also shown that the SH2 domain of Sck, but not that of Src-homology collagen protein (Shc), can precipitate phosphorylated KDR from VEGF-stimulated porcine aortic endothelial cells expressing KDR, and that an N-terminally truncated Sck protein can associate with KDR, in a phosphorylation-dependent fashion, when co-expressed in human embryonic kidney 293 cells. Furthermore, we demonstrate that in the two-hybrid assay, both Shc and Sck SH2 domains can associate with the related receptor Flt1.</description><identifier>ISSN: 0264-6021</identifier><identifier>EISSN: 1470-8728</identifier><identifier>DOI: 10.1042/0264-6021:3470501</identifier><identifier>PMID: 10749680</identifier><language>eng</language><publisher>England</publisher><subject>Adaptor Proteins, Signal Transducing ; Adaptor Proteins, Vesicular Transport ; Binding Sites ; Cell Line ; Endothelial Growth Factors - pharmacology ; Enzyme Activation ; Humans ; Lymphokines - pharmacology ; Mutation - genetics ; Phosphorylation - drug effects ; Precipitin Tests ; Protein Binding ; Proteins - chemistry ; Proteins - genetics ; Proteins - metabolism ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Receptor Protein-Tyrosine Kinases - chemistry ; Receptor Protein-Tyrosine Kinases - genetics ; Receptor Protein-Tyrosine Kinases - metabolism ; Receptors, Growth Factor - chemistry ; Receptors, Growth Factor - genetics ; Receptors, Growth Factor - metabolism ; Receptors, Vascular Endothelial Growth Factor ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Shc Signaling Adaptor Proteins ; Src Homology 2 Domain-Containing, Transforming Protein 1 ; Src Homology 2 Domain-Containing, Transforming Protein 2 ; src Homology Domains ; Transfection ; Two-Hybrid System Techniques ; Tyrosine - metabolism ; Vascular Endothelial Growth Factor A ; Vascular Endothelial Growth Factor Receptor-1 ; Vascular Endothelial Growth Factors</subject><ispartof>Biochemical journal, 2000-04, Vol.347 (Pt 2), p.501-509</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3101-f9ed8429a5f55d4eda69b297734be4a19426bc2d0b4324bc0d81fb737874a8853</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220983/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220983/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10749680$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Warner, A J</creatorcontrib><creatorcontrib>Lopez-Dee, J</creatorcontrib><creatorcontrib>Knight, E L</creatorcontrib><creatorcontrib>Feramisco, J R</creatorcontrib><creatorcontrib>Prigent, S A</creatorcontrib><title>The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells</title><title>Biochemical journal</title><addtitle>Biochem J</addtitle><description>Despite much progress in recent years, the precise signalling events triggered by the vascular-endothelial-growth-factor (VEGF) receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing receptor (KDR), are incompletely defined. Results obtained when Flt1 and KDR are individually expressed in fibroblasts or porcine aortic endothelial cells have not been entirely consistent with those observed in other endothelial cells expressing both receptors endogenously. It has also been difficult to demonstrate VEGF-induced phosphorylation of Flt1, which has led to speculation that KDR may be the more important receptor for the mitogenic action of VEGF on endothelial cells. In an attempt to identify physiologically important effectors which bind to KDR, we have screened a yeast two-hybrid mouse embryo library with the cytoplasmic domain of KDR. Here we describe the identification of the adaptor protein, Shc-like protein (Sck), as a binding partner for KDR. We demonstrate that this interaction requires phosphorylation of KDR, and identify the binding site for the Src-homology 2 (SH2) domain as tyrosine-1175 of KDR. We have also shown that the SH2 domain of Sck, but not that of Src-homology collagen protein (Shc), can precipitate phosphorylated KDR from VEGF-stimulated porcine aortic endothelial cells expressing KDR, and that an N-terminally truncated Sck protein can associate with KDR, in a phosphorylation-dependent fashion, when co-expressed in human embryonic kidney 293 cells. Furthermore, we demonstrate that in the two-hybrid assay, both Shc and Sck SH2 domains can associate with the related receptor Flt1.</description><subject>Adaptor Proteins, Signal Transducing</subject><subject>Adaptor Proteins, Vesicular Transport</subject><subject>Binding Sites</subject><subject>Cell Line</subject><subject>Endothelial Growth Factors - pharmacology</subject><subject>Enzyme Activation</subject><subject>Humans</subject><subject>Lymphokines - pharmacology</subject><subject>Mutation - genetics</subject><subject>Phosphorylation - drug effects</subject><subject>Precipitin Tests</subject><subject>Protein Binding</subject><subject>Proteins - chemistry</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Receptor Protein-Tyrosine Kinases - chemistry</subject><subject>Receptor Protein-Tyrosine Kinases - genetics</subject><subject>Receptor Protein-Tyrosine Kinases - metabolism</subject><subject>Receptors, Growth Factor - chemistry</subject><subject>Receptors, Growth Factor - genetics</subject><subject>Receptors, Growth Factor - metabolism</subject><subject>Receptors, Vascular Endothelial Growth Factor</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Shc Signaling Adaptor Proteins</subject><subject>Src Homology 2 Domain-Containing, Transforming Protein 1</subject><subject>Src Homology 2 Domain-Containing, Transforming Protein 2</subject><subject>src Homology Domains</subject><subject>Transfection</subject><subject>Two-Hybrid System Techniques</subject><subject>Tyrosine - metabolism</subject><subject>Vascular Endothelial Growth Factor A</subject><subject>Vascular Endothelial Growth Factor Receptor-1</subject><subject>Vascular Endothelial Growth Factors</subject><issn>0264-6021</issn><issn>1470-8728</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkcFu1DAQhi1ERbeFB-CCfOJU07HjxA4HJFQKVFRCouVsOfakCThxsLMtPfPiJOyqKidbnvm_Gesj5CWHNxykOAVRSVaB4G8LqaAE_oRs-HJjWgn9lGwe6ofkKOcfAFyChGfkkIOSdaVhQ_5cd0ivOscSBjujp9bbaY6JTinO2I8n9Mr9PKFtTEOmlro4TAF_07t-7ui8RG9tdttgE8PRx-Uh9DawmxTv5o611q2khA7_Ib98-Eb7kc7JjrlFt05zGEJ-Tg5aGzK-2J_H5PvH8-uzz-zy66eLs_eXzBUcOGtr9FqK2pZtWXqJ3lZ1I2qlCtmgtLyWomqc8NDIQsjGgde8bVShtJJW67I4Ju923GnbDOgdjssqwUypH2y6N9H25v_K2HfmJt4aLgTUulgAr_eAFH9tMc9m6PP6BTti3GajRCl5qWBp5LtGl2LOCduHIRzMqs6sasyqxuzVLZlXj7d7lNi5Kv4C5EaWgg</recordid><startdate>20000415</startdate><enddate>20000415</enddate><creator>Warner, A J</creator><creator>Lopez-Dee, J</creator><creator>Knight, E L</creator><creator>Feramisco, J R</creator><creator>Prigent, S A</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000415</creationdate><title>The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells</title><author>Warner, A J ; Lopez-Dee, J ; Knight, E L ; Feramisco, J R ; Prigent, S A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3101-f9ed8429a5f55d4eda69b297734be4a19426bc2d0b4324bc0d81fb737874a8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Adaptor Proteins, Signal Transducing</topic><topic>Adaptor Proteins, Vesicular Transport</topic><topic>Binding Sites</topic><topic>Cell Line</topic><topic>Endothelial Growth Factors - pharmacology</topic><topic>Enzyme Activation</topic><topic>Humans</topic><topic>Lymphokines - pharmacology</topic><topic>Mutation - genetics</topic><topic>Phosphorylation - drug effects</topic><topic>Precipitin Tests</topic><topic>Protein Binding</topic><topic>Proteins - chemistry</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Receptor Protein-Tyrosine Kinases - chemistry</topic><topic>Receptor Protein-Tyrosine Kinases - genetics</topic><topic>Receptor Protein-Tyrosine Kinases - metabolism</topic><topic>Receptors, Growth Factor - chemistry</topic><topic>Receptors, Growth Factor - genetics</topic><topic>Receptors, Growth Factor - metabolism</topic><topic>Receptors, Vascular Endothelial Growth Factor</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Shc Signaling Adaptor Proteins</topic><topic>Src Homology 2 Domain-Containing, Transforming Protein 1</topic><topic>Src Homology 2 Domain-Containing, Transforming Protein 2</topic><topic>src Homology Domains</topic><topic>Transfection</topic><topic>Two-Hybrid System Techniques</topic><topic>Tyrosine - metabolism</topic><topic>Vascular Endothelial Growth Factor A</topic><topic>Vascular Endothelial Growth Factor Receptor-1</topic><topic>Vascular Endothelial Growth Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Warner, A J</creatorcontrib><creatorcontrib>Lopez-Dee, J</creatorcontrib><creatorcontrib>Knight, E L</creatorcontrib><creatorcontrib>Feramisco, J R</creatorcontrib><creatorcontrib>Prigent, S A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biochemical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Warner, A J</au><au>Lopez-Dee, J</au><au>Knight, E L</au><au>Feramisco, J R</au><au>Prigent, S A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells</atitle><jtitle>Biochemical journal</jtitle><addtitle>Biochem J</addtitle><date>2000-04-15</date><risdate>2000</risdate><volume>347</volume><issue>Pt 2</issue><spage>501</spage><epage>509</epage><pages>501-509</pages><issn>0264-6021</issn><eissn>1470-8728</eissn><abstract>Despite much progress in recent years, the precise signalling events triggered by the vascular-endothelial-growth-factor (VEGF) receptors, fms-like tyrosine kinase (Flt1) and kinase insert domain-containing receptor (KDR), are incompletely defined. Results obtained when Flt1 and KDR are individually expressed in fibroblasts or porcine aortic endothelial cells have not been entirely consistent with those observed in other endothelial cells expressing both receptors endogenously. It has also been difficult to demonstrate VEGF-induced phosphorylation of Flt1, which has led to speculation that KDR may be the more important receptor for the mitogenic action of VEGF on endothelial cells. In an attempt to identify physiologically important effectors which bind to KDR, we have screened a yeast two-hybrid mouse embryo library with the cytoplasmic domain of KDR. Here we describe the identification of the adaptor protein, Shc-like protein (Sck), as a binding partner for KDR. We demonstrate that this interaction requires phosphorylation of KDR, and identify the binding site for the Src-homology 2 (SH2) domain as tyrosine-1175 of KDR. We have also shown that the SH2 domain of Sck, but not that of Src-homology collagen protein (Shc), can precipitate phosphorylated KDR from VEGF-stimulated porcine aortic endothelial cells expressing KDR, and that an N-terminally truncated Sck protein can associate with KDR, in a phosphorylation-dependent fashion, when co-expressed in human embryonic kidney 293 cells. Furthermore, we demonstrate that in the two-hybrid assay, both Shc and Sck SH2 domains can associate with the related receptor Flt1.</abstract><cop>England</cop><pmid>10749680</pmid><doi>10.1042/0264-6021:3470501</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-6021 |
ispartof | Biochemical journal, 2000-04, Vol.347 (Pt 2), p.501-509 |
issn | 0264-6021 1470-8728 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1220983 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Adaptor Proteins, Signal Transducing Adaptor Proteins, Vesicular Transport Binding Sites Cell Line Endothelial Growth Factors - pharmacology Enzyme Activation Humans Lymphokines - pharmacology Mutation - genetics Phosphorylation - drug effects Precipitin Tests Protein Binding Proteins - chemistry Proteins - genetics Proteins - metabolism Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism Receptor Protein-Tyrosine Kinases - chemistry Receptor Protein-Tyrosine Kinases - genetics Receptor Protein-Tyrosine Kinases - metabolism Receptors, Growth Factor - chemistry Receptors, Growth Factor - genetics Receptors, Growth Factor - metabolism Receptors, Vascular Endothelial Growth Factor Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Shc Signaling Adaptor Proteins Src Homology 2 Domain-Containing, Transforming Protein 1 Src Homology 2 Domain-Containing, Transforming Protein 2 src Homology Domains Transfection Two-Hybrid System Techniques Tyrosine - metabolism Vascular Endothelial Growth Factor A Vascular Endothelial Growth Factor Receptor-1 Vascular Endothelial Growth Factors |
title | The Shc-related adaptor protein, Sck, forms a complex with the vascular-endothelial-growth-factor receptor KDR in transfected cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A54%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Shc-related%20adaptor%20protein,%20Sck,%20forms%20a%20complex%20with%20the%20vascular-endothelial-growth-factor%20receptor%20KDR%20in%20transfected%20cells&rft.jtitle=Biochemical%20journal&rft.au=Warner,%20A%20J&rft.date=2000-04-15&rft.volume=347&rft.issue=Pt%202&rft.spage=501&rft.epage=509&rft.pages=501-509&rft.issn=0264-6021&rft.eissn=1470-8728&rft_id=info:doi/10.1042/0264-6021:3470501&rft_dat=%3Cproquest_pubme%3E72541570%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72541570&rft_id=info:pmid/10749680&rfr_iscdi=true |