Expression, purification, and characterization of recombinant human glutamine synthetase

A bacterial expression system has been engineered for human glutamine synthetase (EC 6.3.1.2) that produces approximately 60 mg of enzyme (20% of the bacterial soluble protein) and yields approx. 8 mg of purified enzyme per litre of culture. The recombinant enzyme was purified 5-fold to apparent hom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical journal 1997-11, Vol.328 ( Pt 1) (1), p.159-163
Hauptverfasser: Listrom, C D, Morizono, H, Rajagopal, B S, McCann, M T, Tuchman, M, Allewell, N M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bacterial expression system has been engineered for human glutamine synthetase (EC 6.3.1.2) that produces approximately 60 mg of enzyme (20% of the bacterial soluble protein) and yields approx. 8 mg of purified enzyme per litre of culture. The recombinant enzyme was purified 5-fold to apparent homogeneity and characterized. It has a subunit molecular mass of approx. 45000 Da. The Vmax value obtained using a radioactive assay with ammonia and l-[G-3H]glutamic acid as substrates was 15.9 micromol/min per mg, 40% higher than that obtained in the colorimetric assay (9.9 micromol/min per mg) with hydroxylamine replacing ammonia as a substrate. Km values for glutamate were 3.0 mM and 3.5 mM, and for ATP they were 2.0 mM and 2. 9 mM for the radioactive and spectrophotometric assays respectively. The Km for ammonia in the radioactive assay was 0.15 mM. The midpoint of thermal inactivation was 49.7 degrees C. Hydroxylamine, Mg(II) and Mg(II)-ATP stabilized the enzyme against thermal inactivation, whereas ATP promoted inactivation. The pure enzyme is stable for several months in storage and provides a source for additional studies, including X-ray crystallography.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3280159