Feedback Control of Sex Determination by Dosage Compensation Revealed Through Caenorhabditis elegans sdc-3 Mutations
In Caenorhabditis elegans, sex determination and dosage compensation are coordinately controlled through a group of genes that respond to the primary sex determination signal. Here we describe a new gene, sdc-3, that also controls these processes. In contrast to previously described genes, the sex d...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 1993-04, Vol.133 (4), p.875-896 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In Caenorhabditis elegans, sex determination and dosage compensation are coordinately controlled through a group of genes that respond to the primary sex determination signal. Here we describe a new gene, sdc-3, that also controls these processes. In contrast to previously described genes, the sex determination and dosage compensation activities of sdc-3 are separately mutable, indicating that they function independently. Paradoxically, the sdc-3 null phenotype fails to reveal the role of sdc-3 in sex determination: sdc-3 null mutations that lack both activities disrupt dosage compensation but cause no overt sexual transformation. We demonstrate that the dosage compensation defect of sdc-3 null alleles suppresses their sex determination defect. This self-suppression phenomenon provides a striking example of how a disruption in dosage compensation can affect sexual fate. We propose that the suppression occurs via a feedback mechanism that acts at an early regulatory step in the sex determination pathway to promote proper sexual identity. |
---|---|
ISSN: | 0016-6731 1943-2631 1943-2631 |
DOI: | 10.1093/genetics/133.4.875 |