Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis
We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 1989-06, Vol.122 (2), p.317-330 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 330 |
---|---|
container_issue | 2 |
container_start_page | 317 |
container_title | Genetics (Austin) |
container_volume | 122 |
creator | McGraw, P. (Carnegie Mellon University, Pittsburgh, PA) Henry, S.A |
description | We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene. |
doi_str_mv | 10.1093/genetics/122.2.317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1203704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15411886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-40159428810799be77b4a6e155a4b76b8f115a745bff806197058e63e38116bf3</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhSMEKkPhBSoheYFYNVNfO7ETFpVQVX6kIhala8vx3CRGSRxsT6N5Dl4YtzMMZWF5cc79ztU9WXYGdA205hcdThitCRfA2JqtOchn2QrqgudMcHierSgFkQvJ4WX2KoSflFJRl9VJdsKEpEKIVfb72zbqaN0UiJ1I7JHcamN67d24MxiIQY_3NliNxM2Wk4fIDwTbFk0MxE1k7l1Ib7Cz3ZARY78bHnnnpPNuiT3R04YY70LIZx37Re-Ix267NxHXplgXbHQDCbsp5QcbXmcvWj0EfHP4T7O7T9c_rr7kN98_f736eJObksqYFxTKumBVBVTWdYNSNoUWCGWpi0aKpmoBSi2LsmnbigqoJS0rFBx5BSCalp9ml3vuvG1G3BicoteDmr0dtd8pp636X5lsrzp3r4BRLmmRAO8PAO9-bTFENdpgcBj0hG4bFJQFQFWJZGR74-MhPLbHEKDqoUr1t8rEZoqpVGUaevt0vePIobukvzvoOhg9tF5PxoajTbKaUSn_Ldnbrl-sRxVGPQwJCmpZlqd5Z3tjq53SnU-su9ua0qLknP8BJ6XCrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15411886</pqid></control><display><type>article</type><title>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA) ; Henry, S.A</creator><creatorcontrib>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA) ; Henry, S.A</creatorcontrib><description>We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/122.2.317</identifier><identifier>PMID: 2670666</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>Bethesda, MD: Genetics Soc America</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Alleles ; BIOCHEMICAL PATHWAYS ; Biological and medical sciences ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; Classical genetics, quantitative genetics, hybrids ; CODE GENETIQUE ; CODIGO GENETICO ; CONTROL GENETICO ; ENZYMIC ACTIVITY ; FOSFOLIPIDOS ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genes ; Genes, Fungal ; GENETIC CODE ; GENETIC CONTROL ; GENETICA ; GENETICS ; Genetics of eukaryotes. Biological and molecular evolution ; GENETIQUE ; INOSITOL ; Inositol - biosynthesis ; Investigations ; LUTTE GENETIQUE ; Membrane Lipids - metabolism ; METHYLATION ; Methyltransferases - genetics ; Methyltransferases - metabolism ; METILACION ; MUTANT ; MUTANTES ; MUTANTS ; MYOINOSITOL ; PHOSPHATIDE ; Phosphatidylethanolamine N-Methyltransferase ; PHOSPHOLIPIDS ; Phospholipids - metabolism ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Thallophyta, bryophyta ; Vegetals ; VIA BIOQUIMICA DEL METABOLISMO ; VOIE BIOCHIMIQUE DU METABOLISME</subject><ispartof>Genetics (Austin), 1989-06, Vol.122 (2), p.317-330</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-40159428810799be77b4a6e155a4b76b8f115a745bff806197058e63e38116bf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7292077$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2670666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</creatorcontrib><creatorcontrib>Henry, S.A</creatorcontrib><title>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Alleles</subject><subject>BIOCHEMICAL PATHWAYS</subject><subject>Biological and medical sciences</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>CODE GENETIQUE</subject><subject>CODIGO GENETICO</subject><subject>CONTROL GENETICO</subject><subject>ENZYMIC ACTIVITY</subject><subject>FOSFOLIPIDOS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>GENETIC CODE</subject><subject>GENETIC CONTROL</subject><subject>GENETICA</subject><subject>GENETICS</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>GENETIQUE</subject><subject>INOSITOL</subject><subject>Inositol - biosynthesis</subject><subject>Investigations</subject><subject>LUTTE GENETIQUE</subject><subject>Membrane Lipids - metabolism</subject><subject>METHYLATION</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>METILACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MYOINOSITOL</subject><subject>PHOSPHATIDE</subject><subject>Phosphatidylethanolamine N-Methyltransferase</subject><subject>PHOSPHOLIPIDS</subject><subject>Phospholipids - metabolism</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Thallophyta, bryophyta</subject><subject>Vegetals</subject><subject>VIA BIOQUIMICA DEL METABOLISMO</subject><subject>VOIE BIOCHIMIQUE DU METABOLISME</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAUhSMEKkPhBSoheYFYNVNfO7ETFpVQVX6kIhala8vx3CRGSRxsT6N5Dl4YtzMMZWF5cc79ztU9WXYGdA205hcdThitCRfA2JqtOchn2QrqgudMcHierSgFkQvJ4WX2KoSflFJRl9VJdsKEpEKIVfb72zbqaN0UiJ1I7JHcamN67d24MxiIQY_3NliNxM2Wk4fIDwTbFk0MxE1k7l1Ib7Cz3ZARY78bHnnnpPNuiT3R04YY70LIZx37Re-Ix267NxHXplgXbHQDCbsp5QcbXmcvWj0EfHP4T7O7T9c_rr7kN98_f736eJObksqYFxTKumBVBVTWdYNSNoUWCGWpi0aKpmoBSi2LsmnbigqoJS0rFBx5BSCalp9ml3vuvG1G3BicoteDmr0dtd8pp636X5lsrzp3r4BRLmmRAO8PAO9-bTFENdpgcBj0hG4bFJQFQFWJZGR74-MhPLbHEKDqoUr1t8rEZoqpVGUaevt0vePIobukvzvoOhg9tF5PxoajTbKaUSn_Ldnbrl-sRxVGPQwJCmpZlqd5Z3tjq53SnU-su9ua0qLknP8BJ6XCrg</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</creator><creator>Henry, S.A</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19890601</creationdate><title>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</title><author>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA) ; Henry, S.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-40159428810799be77b4a6e155a4b76b8f115a745bff806197058e63e38116bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Alleles</topic><topic>BIOCHEMICAL PATHWAYS</topic><topic>Biological and medical sciences</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>CODE GENETIQUE</topic><topic>CODIGO GENETICO</topic><topic>CONTROL GENETICO</topic><topic>ENZYMIC ACTIVITY</topic><topic>FOSFOLIPIDOS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>GENETIC CODE</topic><topic>GENETIC CONTROL</topic><topic>GENETICA</topic><topic>GENETICS</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>GENETIQUE</topic><topic>INOSITOL</topic><topic>Inositol - biosynthesis</topic><topic>Investigations</topic><topic>LUTTE GENETIQUE</topic><topic>Membrane Lipids - metabolism</topic><topic>METHYLATION</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>METILACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MYOINOSITOL</topic><topic>PHOSPHATIDE</topic><topic>Phosphatidylethanolamine N-Methyltransferase</topic><topic>PHOSPHOLIPIDS</topic><topic>Phospholipids - metabolism</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Thallophyta, bryophyta</topic><topic>Vegetals</topic><topic>VIA BIOQUIMICA DEL METABOLISMO</topic><topic>VOIE BIOCHIMIQUE DU METABOLISME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</creatorcontrib><creatorcontrib>Henry, S.A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</au><au>Henry, S.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>1989-06-01</date><risdate>1989</risdate><volume>122</volume><issue>2</issue><spage>317</spage><epage>330</epage><pages>317-330</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.</abstract><cop>Bethesda, MD</cop><pub>Genetics Soc America</pub><pmid>2670666</pmid><doi>10.1093/genetics/122.2.317</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 1989-06, Vol.122 (2), p.317-330 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1203704 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE Alleles BIOCHEMICAL PATHWAYS Biological and medical sciences BIOSINTESIS BIOSYNTHESE BIOSYNTHESIS Classical genetics, quantitative genetics, hybrids CODE GENETIQUE CODIGO GENETICO CONTROL GENETICO ENZYMIC ACTIVITY FOSFOLIPIDOS Fundamental and applied biological sciences. Psychology Fungal Proteins - genetics Fungal Proteins - metabolism Genes Genes, Fungal GENETIC CODE GENETIC CONTROL GENETICA GENETICS Genetics of eukaryotes. Biological and molecular evolution GENETIQUE INOSITOL Inositol - biosynthesis Investigations LUTTE GENETIQUE Membrane Lipids - metabolism METHYLATION Methyltransferases - genetics Methyltransferases - metabolism METILACION MUTANT MUTANTES MUTANTS MYOINOSITOL PHOSPHATIDE Phosphatidylethanolamine N-Methyltransferase PHOSPHOLIPIDS Phospholipids - metabolism SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins Thallophyta, bryophyta Vegetals VIA BIOQUIMICA DEL METABOLISMO VOIE BIOCHIMIQUE DU METABOLISME |
title | Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20the%20Saccharomyces%20cerevisiae%20opi3%20gene:%20effects%20on%20phospholipid%20methylation,%20growth%20and%20cross-pathway%20regulation%20of%20inositol%20synthesis&rft.jtitle=Genetics%20(Austin)&rft.au=McGraw,%20P.%20(Carnegie%20Mellon%20University,%20Pittsburgh,%20PA)&rft.date=1989-06-01&rft.volume=122&rft.issue=2&rft.spage=317&rft.epage=330&rft.pages=317-330&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/122.2.317&rft_dat=%3Cproquest_pubme%3E15411886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15411886&rft_id=info:pmid/2670666&rfr_iscdi=true |