Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis

We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 1989-06, Vol.122 (2), p.317-330
Hauptverfasser: McGraw, P. (Carnegie Mellon University, Pittsburgh, PA), Henry, S.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 330
container_issue 2
container_start_page 317
container_title Genetics (Austin)
container_volume 122
creator McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)
Henry, S.A
description We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.
doi_str_mv 10.1093/genetics/122.2.317
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1203704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15411886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c507t-40159428810799be77b4a6e155a4b76b8f115a745bff806197058e63e38116bf3</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhSMEKkPhBSoheYFYNVNfO7ETFpVQVX6kIhala8vx3CRGSRxsT6N5Dl4YtzMMZWF5cc79ztU9WXYGdA205hcdThitCRfA2JqtOchn2QrqgudMcHierSgFkQvJ4WX2KoSflFJRl9VJdsKEpEKIVfb72zbqaN0UiJ1I7JHcamN67d24MxiIQY_3NliNxM2Wk4fIDwTbFk0MxE1k7l1Ib7Cz3ZARY78bHnnnpPNuiT3R04YY70LIZx37Re-Ix267NxHXplgXbHQDCbsp5QcbXmcvWj0EfHP4T7O7T9c_rr7kN98_f736eJObksqYFxTKumBVBVTWdYNSNoUWCGWpi0aKpmoBSi2LsmnbigqoJS0rFBx5BSCalp9ml3vuvG1G3BicoteDmr0dtd8pp636X5lsrzp3r4BRLmmRAO8PAO9-bTFENdpgcBj0hG4bFJQFQFWJZGR74-MhPLbHEKDqoUr1t8rEZoqpVGUaevt0vePIobukvzvoOhg9tF5PxoajTbKaUSn_Ldnbrl-sRxVGPQwJCmpZlqd5Z3tjq53SnU-su9ua0qLknP8BJ6XCrg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15411886</pqid></control><display><type>article</type><title>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA) ; Henry, S.A</creator><creatorcontrib>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA) ; Henry, S.A</creatorcontrib><description>We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/122.2.317</identifier><identifier>PMID: 2670666</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>Bethesda, MD: Genetics Soc America</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Alleles ; BIOCHEMICAL PATHWAYS ; Biological and medical sciences ; BIOSINTESIS ; BIOSYNTHESE ; BIOSYNTHESIS ; Classical genetics, quantitative genetics, hybrids ; CODE GENETIQUE ; CODIGO GENETICO ; CONTROL GENETICO ; ENZYMIC ACTIVITY ; FOSFOLIPIDOS ; Fundamental and applied biological sciences. Psychology ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genes ; Genes, Fungal ; GENETIC CODE ; GENETIC CONTROL ; GENETICA ; GENETICS ; Genetics of eukaryotes. Biological and molecular evolution ; GENETIQUE ; INOSITOL ; Inositol - biosynthesis ; Investigations ; LUTTE GENETIQUE ; Membrane Lipids - metabolism ; METHYLATION ; Methyltransferases - genetics ; Methyltransferases - metabolism ; METILACION ; MUTANT ; MUTANTES ; MUTANTS ; MYOINOSITOL ; PHOSPHATIDE ; Phosphatidylethanolamine N-Methyltransferase ; PHOSPHOLIPIDS ; Phospholipids - metabolism ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Thallophyta, bryophyta ; Vegetals ; VIA BIOQUIMICA DEL METABOLISMO ; VOIE BIOCHIMIQUE DU METABOLISME</subject><ispartof>Genetics (Austin), 1989-06, Vol.122 (2), p.317-330</ispartof><rights>1989 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c507t-40159428810799be77b4a6e155a4b76b8f115a745bff806197058e63e38116bf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7292077$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/2670666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</creatorcontrib><creatorcontrib>Henry, S.A</creatorcontrib><title>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Alleles</subject><subject>BIOCHEMICAL PATHWAYS</subject><subject>Biological and medical sciences</subject><subject>BIOSINTESIS</subject><subject>BIOSYNTHESE</subject><subject>BIOSYNTHESIS</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>CODE GENETIQUE</subject><subject>CODIGO GENETICO</subject><subject>CONTROL GENETICO</subject><subject>ENZYMIC ACTIVITY</subject><subject>FOSFOLIPIDOS</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes</subject><subject>Genes, Fungal</subject><subject>GENETIC CODE</subject><subject>GENETIC CONTROL</subject><subject>GENETICA</subject><subject>GENETICS</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>GENETIQUE</subject><subject>INOSITOL</subject><subject>Inositol - biosynthesis</subject><subject>Investigations</subject><subject>LUTTE GENETIQUE</subject><subject>Membrane Lipids - metabolism</subject><subject>METHYLATION</subject><subject>Methyltransferases - genetics</subject><subject>Methyltransferases - metabolism</subject><subject>METILACION</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MYOINOSITOL</subject><subject>PHOSPHATIDE</subject><subject>Phosphatidylethanolamine N-Methyltransferase</subject><subject>PHOSPHOLIPIDS</subject><subject>Phospholipids - metabolism</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Thallophyta, bryophyta</subject><subject>Vegetals</subject><subject>VIA BIOQUIMICA DEL METABOLISMO</subject><subject>VOIE BIOCHIMIQUE DU METABOLISME</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkc1u1DAUhSMEKkPhBSoheYFYNVNfO7ETFpVQVX6kIhala8vx3CRGSRxsT6N5Dl4YtzMMZWF5cc79ztU9WXYGdA205hcdThitCRfA2JqtOchn2QrqgudMcHierSgFkQvJ4WX2KoSflFJRl9VJdsKEpEKIVfb72zbqaN0UiJ1I7JHcamN67d24MxiIQY_3NliNxM2Wk4fIDwTbFk0MxE1k7l1Ib7Cz3ZARY78bHnnnpPNuiT3R04YY70LIZx37Re-Ix267NxHXplgXbHQDCbsp5QcbXmcvWj0EfHP4T7O7T9c_rr7kN98_f736eJObksqYFxTKumBVBVTWdYNSNoUWCGWpi0aKpmoBSi2LsmnbigqoJS0rFBx5BSCalp9ml3vuvG1G3BicoteDmr0dtd8pp636X5lsrzp3r4BRLmmRAO8PAO9-bTFENdpgcBj0hG4bFJQFQFWJZGR74-MhPLbHEKDqoUr1t8rEZoqpVGUaevt0vePIobukvzvoOhg9tF5PxoajTbKaUSn_Ldnbrl-sRxVGPQwJCmpZlqd5Z3tjq53SnU-su9ua0qLknP8BJ6XCrg</recordid><startdate>19890601</startdate><enddate>19890601</enddate><creator>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</creator><creator>Henry, S.A</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19890601</creationdate><title>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</title><author>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA) ; Henry, S.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c507t-40159428810799be77b4a6e155a4b76b8f115a745bff806197058e63e38116bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Alleles</topic><topic>BIOCHEMICAL PATHWAYS</topic><topic>Biological and medical sciences</topic><topic>BIOSINTESIS</topic><topic>BIOSYNTHESE</topic><topic>BIOSYNTHESIS</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>CODE GENETIQUE</topic><topic>CODIGO GENETICO</topic><topic>CONTROL GENETICO</topic><topic>ENZYMIC ACTIVITY</topic><topic>FOSFOLIPIDOS</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes</topic><topic>Genes, Fungal</topic><topic>GENETIC CODE</topic><topic>GENETIC CONTROL</topic><topic>GENETICA</topic><topic>GENETICS</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>GENETIQUE</topic><topic>INOSITOL</topic><topic>Inositol - biosynthesis</topic><topic>Investigations</topic><topic>LUTTE GENETIQUE</topic><topic>Membrane Lipids - metabolism</topic><topic>METHYLATION</topic><topic>Methyltransferases - genetics</topic><topic>Methyltransferases - metabolism</topic><topic>METILACION</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MYOINOSITOL</topic><topic>PHOSPHATIDE</topic><topic>Phosphatidylethanolamine N-Methyltransferase</topic><topic>PHOSPHOLIPIDS</topic><topic>Phospholipids - metabolism</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Thallophyta, bryophyta</topic><topic>Vegetals</topic><topic>VIA BIOQUIMICA DEL METABOLISMO</topic><topic>VOIE BIOCHIMIQUE DU METABOLISME</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</creatorcontrib><creatorcontrib>Henry, S.A</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McGraw, P. (Carnegie Mellon University, Pittsburgh, PA)</au><au>Henry, S.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>1989-06-01</date><risdate>1989</risdate><volume>122</volume><issue>2</issue><spage>317</spage><epage>330</epage><pages>317-330</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>We report the isolation of two new opi3 mutants by EMS mutagenesis, and construction of an insertion allele in vitro using the cloned gene. We have demonstrated that the opi3 mutations cause a deficiency in the two terminal phospholipid N-methyltransferase (PLMT) activities required for the de novo synthesis of PC (phosphatidylcholine). The opi3 mutants, under certain growth conditions, produce membrane virtually devoid of PC although, surprisingly, none of the mutants displays a strict auxotrophic requirement for choline. Although the opi3 mutants grow without supplements, we have shown that the atypical membrane affects the ability of the mutant strains to initiate log phase growth and to sustain viability at stationary phase. The commencement of log phase growth is enhanced by addition of choline or to a lesser extent DME (dimethylethanolamine), and retarded by addition of MME (monomethylethanolamine). The mutant cells lose viability at the stationary phase of the cell cycle in the absence of DME or choline, and are also temperature sensitive for growth at 37 degrees especially in media containing MME. These growth defects have been correlated to the presence of specific phospholipids in the membrane. The opi3 growth defects are suppressed by an unusual mutation in the phospholipid methylation pathway that perturbs the N-methyltransferase (PEMT) activity immediately preceding the reactions affected by the opi3 lesion. We believe this mutation, cho2-S, alters the substrate specificity of the PEMT. A secondary effect of opi3 mutations is disruption of the cross pathway regulation of the synthesis of the PI (phosphatidylinositol) precursor inositol. Synthesis of inositol is controlled through regulation of the INO1 gene which encodes inositol-1-phosphate synthase. This highly regulated gene is expressed constitutively in opi3 mutants. We have used the opi3 strains to demonstrate that synthesis of either PC or PD (phosphatidyldimethylethanolamine) will restore normal regulation of the INO1 gene.</abstract><cop>Bethesda, MD</cop><pub>Genetics Soc America</pub><pmid>2670666</pmid><doi>10.1093/genetics/122.2.317</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 1989-06, Vol.122 (2), p.317-330
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1203704
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
Alleles
BIOCHEMICAL PATHWAYS
Biological and medical sciences
BIOSINTESIS
BIOSYNTHESE
BIOSYNTHESIS
Classical genetics, quantitative genetics, hybrids
CODE GENETIQUE
CODIGO GENETICO
CONTROL GENETICO
ENZYMIC ACTIVITY
FOSFOLIPIDOS
Fundamental and applied biological sciences. Psychology
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genes
Genes, Fungal
GENETIC CODE
GENETIC CONTROL
GENETICA
GENETICS
Genetics of eukaryotes. Biological and molecular evolution
GENETIQUE
INOSITOL
Inositol - biosynthesis
Investigations
LUTTE GENETIQUE
Membrane Lipids - metabolism
METHYLATION
Methyltransferases - genetics
Methyltransferases - metabolism
METILACION
MUTANT
MUTANTES
MUTANTS
MYOINOSITOL
PHOSPHATIDE
Phosphatidylethanolamine N-Methyltransferase
PHOSPHOLIPIDS
Phospholipids - metabolism
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
Thallophyta, bryophyta
Vegetals
VIA BIOQUIMICA DEL METABOLISMO
VOIE BIOCHIMIQUE DU METABOLISME
title Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A25%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mutations%20in%20the%20Saccharomyces%20cerevisiae%20opi3%20gene:%20effects%20on%20phospholipid%20methylation,%20growth%20and%20cross-pathway%20regulation%20of%20inositol%20synthesis&rft.jtitle=Genetics%20(Austin)&rft.au=McGraw,%20P.%20(Carnegie%20Mellon%20University,%20Pittsburgh,%20PA)&rft.date=1989-06-01&rft.volume=122&rft.issue=2&rft.spage=317&rft.epage=330&rft.pages=317-330&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/122.2.317&rft_dat=%3Cproquest_pubme%3E15411886%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15411886&rft_id=info:pmid/2670666&rfr_iscdi=true