Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating

Anthracene-9-carboxylic acid (9-AC) has been reported to show both potentiation and inhibitory effects on guinea-pig cardiac cAMP-activated chloride channels via two different binding sites, and inhibition of Mg(2+)-sensitive protein phosphatases has been proposed for the mechanism of 9-AC potentiat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 2004-10, Vol.449 (1), p.88-95
Hauptverfasser: Ai, Tomohiko, Bompadre, Silvia G, Sohma, Yoshiro, Wang, Xiaohui, Li, Min, Hwang, Tzyh-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue 1
container_start_page 88
container_title Pflügers Archiv
container_volume 449
creator Ai, Tomohiko
Bompadre, Silvia G
Sohma, Yoshiro
Wang, Xiaohui
Li, Min
Hwang, Tzyh-Chang
description Anthracene-9-carboxylic acid (9-AC) has been reported to show both potentiation and inhibitory effects on guinea-pig cardiac cAMP-activated chloride channels via two different binding sites, and inhibition of Mg(2+)-sensitive protein phosphatases has been proposed for the mechanism of 9-AC potentiation effect. In this study, we examined the effects of 9-AC on wild-type and mutant human cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels expressed in NIH3T3 or CHO cells. 9-AC inhibits whole-cell CFTR current in a voltage-dependent manner, whereas the potentiation effect is not affected by membrane potentials. Anthracene-9-methanol, an electro-neutral 9-AC analog, fails to block CFTR, but shows a nearly identical potentiation effect, corroborating the idea that two chemically distinct sites are responsible, respectively, for potentiation and inhibitory actions of 9-AC. 9-AC also enhances the activity of deltaR-CFTR, a constitutively active CFTR mutant whose R-domain is removed. In excised inside-out patches, 9-AC increases Po by prolonging the mean burst durations and shortening the interburst durations. We therefore conclude that two different 9-AC binding sites for potentiation and inhibitory effects on CFTR channels are located outside of the R-domain. We also speculate that 9-AC potentiates CFTR activity by directly affecting CFTR gating.
doi_str_mv 10.1007/s00424-004-1317-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1201469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67277399</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-947e8f0ae5d36c38322ff7ef80eaf07d24f9f6af67a3ab3171fcbec6f2f2305e3</originalsourceid><addsrcrecordid>eNpdUctuFDEQtBCIbBY-gAuyOORm0n6sPXNBQiGESJG4wNnyeOyNoxl7sT1I-_d4tCtel65DV5e6qhB6Q-E9BVDXBUAwQdoklFNFjs_QhgrOCAPKn6MNAKdEKtldoMtSngCAiY69RBd0x3rgwDbIfwrZ2Yqd9w0KTh73xMT6mI110WGb5kNa4tg2EdtjqcFiH4acSii4ZhPL7Oah4UqN42Kridbh7PbLZGrKeG9qiPtX6IU3U3Gvz7hF3z_ffrv5Qh6-3t3ffHwgVnRdJb1QrvNg3G7k0vKOM-a9cr4DZzyokQnfe2m8VIaboVmm3g7OSs8847BzfIs-nHQPyzC7sVloP076kMNs8lEnE_S_mxge9T791LRFJmTfBK7OAjn9WFypeg7FumlqDtNStFRMKd6vxHf_EZ_SkmMzp5WgIPs14S2iJ5JtgZXs_O9PKOi1Qn2qULep1wr1sd28_dvCn4tzZ_wXRjOa1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>741069290</pqid></control><display><type>article</type><title>Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating</title><source>MEDLINE</source><source>SpringerLink Journals (MCLS)</source><creator>Ai, Tomohiko ; Bompadre, Silvia G ; Sohma, Yoshiro ; Wang, Xiaohui ; Li, Min ; Hwang, Tzyh-Chang</creator><creatorcontrib>Ai, Tomohiko ; Bompadre, Silvia G ; Sohma, Yoshiro ; Wang, Xiaohui ; Li, Min ; Hwang, Tzyh-Chang</creatorcontrib><description>Anthracene-9-carboxylic acid (9-AC) has been reported to show both potentiation and inhibitory effects on guinea-pig cardiac cAMP-activated chloride channels via two different binding sites, and inhibition of Mg(2+)-sensitive protein phosphatases has been proposed for the mechanism of 9-AC potentiation effect. In this study, we examined the effects of 9-AC on wild-type and mutant human cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels expressed in NIH3T3 or CHO cells. 9-AC inhibits whole-cell CFTR current in a voltage-dependent manner, whereas the potentiation effect is not affected by membrane potentials. Anthracene-9-methanol, an electro-neutral 9-AC analog, fails to block CFTR, but shows a nearly identical potentiation effect, corroborating the idea that two chemically distinct sites are responsible, respectively, for potentiation and inhibitory actions of 9-AC. 9-AC also enhances the activity of deltaR-CFTR, a constitutively active CFTR mutant whose R-domain is removed. In excised inside-out patches, 9-AC increases Po by prolonging the mean burst durations and shortening the interburst durations. We therefore conclude that two different 9-AC binding sites for potentiation and inhibitory effects on CFTR channels are located outside of the R-domain. We also speculate that 9-AC potentiates CFTR activity by directly affecting CFTR gating.</description><identifier>ISSN: 0031-6768</identifier><identifier>EISSN: 1432-2013</identifier><identifier>DOI: 10.1007/s00424-004-1317-y</identifier><identifier>PMID: 15290302</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Animals ; Anthracenes - metabolism ; Anthracenes - pharmacology ; Binding sites ; CHO Cells ; Cricetinae ; Cystic fibrosis ; Cystic Fibrosis Transmembrane Conductance Regulator - metabolism ; Guinea Pigs ; Humans ; Ion Channel Gating - drug effects ; Mice ; NIH 3T3 Cells ; Patch-Clamp Techniques ; Proteins</subject><ispartof>Pflügers Archiv, 2004-10, Vol.449 (1), p.88-95</ispartof><rights>Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-947e8f0ae5d36c38322ff7ef80eaf07d24f9f6af67a3ab3171fcbec6f2f2305e3</citedby><cites>FETCH-LOGICAL-c488t-947e8f0ae5d36c38322ff7ef80eaf07d24f9f6af67a3ab3171fcbec6f2f2305e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15290302$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ai, Tomohiko</creatorcontrib><creatorcontrib>Bompadre, Silvia G</creatorcontrib><creatorcontrib>Sohma, Yoshiro</creatorcontrib><creatorcontrib>Wang, Xiaohui</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Hwang, Tzyh-Chang</creatorcontrib><title>Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating</title><title>Pflügers Archiv</title><addtitle>Pflugers Arch</addtitle><description>Anthracene-9-carboxylic acid (9-AC) has been reported to show both potentiation and inhibitory effects on guinea-pig cardiac cAMP-activated chloride channels via two different binding sites, and inhibition of Mg(2+)-sensitive protein phosphatases has been proposed for the mechanism of 9-AC potentiation effect. In this study, we examined the effects of 9-AC on wild-type and mutant human cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels expressed in NIH3T3 or CHO cells. 9-AC inhibits whole-cell CFTR current in a voltage-dependent manner, whereas the potentiation effect is not affected by membrane potentials. Anthracene-9-methanol, an electro-neutral 9-AC analog, fails to block CFTR, but shows a nearly identical potentiation effect, corroborating the idea that two chemically distinct sites are responsible, respectively, for potentiation and inhibitory actions of 9-AC. 9-AC also enhances the activity of deltaR-CFTR, a constitutively active CFTR mutant whose R-domain is removed. In excised inside-out patches, 9-AC increases Po by prolonging the mean burst durations and shortening the interburst durations. We therefore conclude that two different 9-AC binding sites for potentiation and inhibitory effects on CFTR channels are located outside of the R-domain. We also speculate that 9-AC potentiates CFTR activity by directly affecting CFTR gating.</description><subject>Animals</subject><subject>Anthracenes - metabolism</subject><subject>Anthracenes - pharmacology</subject><subject>Binding sites</subject><subject>CHO Cells</subject><subject>Cricetinae</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</subject><subject>Guinea Pigs</subject><subject>Humans</subject><subject>Ion Channel Gating - drug effects</subject><subject>Mice</subject><subject>NIH 3T3 Cells</subject><subject>Patch-Clamp Techniques</subject><subject>Proteins</subject><issn>0031-6768</issn><issn>1432-2013</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdUctuFDEQtBCIbBY-gAuyOORm0n6sPXNBQiGESJG4wNnyeOyNoxl7sT1I-_d4tCtel65DV5e6qhB6Q-E9BVDXBUAwQdoklFNFjs_QhgrOCAPKn6MNAKdEKtldoMtSngCAiY69RBd0x3rgwDbIfwrZ2Yqd9w0KTh73xMT6mI110WGb5kNa4tg2EdtjqcFiH4acSii4ZhPL7Oah4UqN42Kridbh7PbLZGrKeG9qiPtX6IU3U3Gvz7hF3z_ffrv5Qh6-3t3ffHwgVnRdJb1QrvNg3G7k0vKOM-a9cr4DZzyokQnfe2m8VIaboVmm3g7OSs8847BzfIs-nHQPyzC7sVloP076kMNs8lEnE_S_mxge9T791LRFJmTfBK7OAjn9WFypeg7FumlqDtNStFRMKd6vxHf_EZ_SkmMzp5WgIPs14S2iJ5JtgZXs_O9PKOi1Qn2qULep1wr1sd28_dvCn4tzZ_wXRjOa1g</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Ai, Tomohiko</creator><creator>Bompadre, Silvia G</creator><creator>Sohma, Yoshiro</creator><creator>Wang, Xiaohui</creator><creator>Li, Min</creator><creator>Hwang, Tzyh-Chang</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20041001</creationdate><title>Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating</title><author>Ai, Tomohiko ; Bompadre, Silvia G ; Sohma, Yoshiro ; Wang, Xiaohui ; Li, Min ; Hwang, Tzyh-Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-947e8f0ae5d36c38322ff7ef80eaf07d24f9f6af67a3ab3171fcbec6f2f2305e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Animals</topic><topic>Anthracenes - metabolism</topic><topic>Anthracenes - pharmacology</topic><topic>Binding sites</topic><topic>CHO Cells</topic><topic>Cricetinae</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis Transmembrane Conductance Regulator - metabolism</topic><topic>Guinea Pigs</topic><topic>Humans</topic><topic>Ion Channel Gating - drug effects</topic><topic>Mice</topic><topic>NIH 3T3 Cells</topic><topic>Patch-Clamp Techniques</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ai, Tomohiko</creatorcontrib><creatorcontrib>Bompadre, Silvia G</creatorcontrib><creatorcontrib>Sohma, Yoshiro</creatorcontrib><creatorcontrib>Wang, Xiaohui</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Hwang, Tzyh-Chang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pflügers Archiv</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ai, Tomohiko</au><au>Bompadre, Silvia G</au><au>Sohma, Yoshiro</au><au>Wang, Xiaohui</au><au>Li, Min</au><au>Hwang, Tzyh-Chang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating</atitle><jtitle>Pflügers Archiv</jtitle><addtitle>Pflugers Arch</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>449</volume><issue>1</issue><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>0031-6768</issn><eissn>1432-2013</eissn><abstract>Anthracene-9-carboxylic acid (9-AC) has been reported to show both potentiation and inhibitory effects on guinea-pig cardiac cAMP-activated chloride channels via two different binding sites, and inhibition of Mg(2+)-sensitive protein phosphatases has been proposed for the mechanism of 9-AC potentiation effect. In this study, we examined the effects of 9-AC on wild-type and mutant human cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels expressed in NIH3T3 or CHO cells. 9-AC inhibits whole-cell CFTR current in a voltage-dependent manner, whereas the potentiation effect is not affected by membrane potentials. Anthracene-9-methanol, an electro-neutral 9-AC analog, fails to block CFTR, but shows a nearly identical potentiation effect, corroborating the idea that two chemically distinct sites are responsible, respectively, for potentiation and inhibitory actions of 9-AC. 9-AC also enhances the activity of deltaR-CFTR, a constitutively active CFTR mutant whose R-domain is removed. In excised inside-out patches, 9-AC increases Po by prolonging the mean burst durations and shortening the interburst durations. We therefore conclude that two different 9-AC binding sites for potentiation and inhibitory effects on CFTR channels are located outside of the R-domain. We also speculate that 9-AC potentiates CFTR activity by directly affecting CFTR gating.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>15290302</pmid><doi>10.1007/s00424-004-1317-y</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-6768
ispartof Pflügers Archiv, 2004-10, Vol.449 (1), p.88-95
issn 0031-6768
1432-2013
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1201469
source MEDLINE; SpringerLink Journals (MCLS)
subjects Animals
Anthracenes - metabolism
Anthracenes - pharmacology
Binding sites
CHO Cells
Cricetinae
Cystic fibrosis
Cystic Fibrosis Transmembrane Conductance Regulator - metabolism
Guinea Pigs
Humans
Ion Channel Gating - drug effects
Mice
NIH 3T3 Cells
Patch-Clamp Techniques
Proteins
title Direct effects of 9-anthracene compounds on cystic fibrosis transmembrane conductance regulator gating
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A32%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20effects%20of%209-anthracene%20compounds%20on%20cystic%20fibrosis%20transmembrane%20conductance%20regulator%20gating&rft.jtitle=Pfl%C3%BCgers%20Archiv&rft.au=Ai,%20Tomohiko&rft.date=2004-10-01&rft.volume=449&rft.issue=1&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=0031-6768&rft.eissn=1432-2013&rft_id=info:doi/10.1007/s00424-004-1317-y&rft_dat=%3Cproquest_pubme%3E67277399%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=741069290&rft_id=info:pmid/15290302&rfr_iscdi=true