Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem

Recordings were made from identified central axons at a known distance from their somata, to compare the action potentials resulting from antidromic and synaptic excitation. By taking advantage of the anatomical configuration within the brain stem of the motoneurones innervating the retractor bulbi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of physiology 1983-02, Vol.335 (1), p.205-220
Hauptverfasser: Gogan, P, Gueritaud, J P, Tyc-Dumont, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 220
container_issue 1
container_start_page 205
container_title The Journal of physiology
container_volume 335
creator Gogan, P
Gueritaud, J P
Tyc-Dumont, S
description Recordings were made from identified central axons at a known distance from their somata, to compare the action potentials resulting from antidromic and synaptic excitation. By taking advantage of the anatomical configuration within the brain stem of the motoneurones innervating the retractor bulbi muscle in the orbit, their axons were penetrated in the VIth nucleus and labelled by electrophoretic injection of horseradish peroxidase. Excitatory post-synaptic potentials recorded in the retractor bulbi axons at about 3 mm from the soma were six times smaller than in the soma. The space constant of the axonal segment between the retractor bulbi and the abducens nucleus was estimated to be 1.7 mm. When the axons propagated action potentials the attenuation was increased to eighteen times due to the nodes of Ranvier intercalated between the soma and the site of recording. Antidromic action potentials displayed stepwise changes in amplitude and shape when stimuli were applied at intervals decreasing from 5 ms to 0.7 ms. The changes were related to the different lengths of refractoriness of the soma, initial segment and axon. Orthodromic action potentials evoked by synaptic excitation displayed similar changes in amplitude and shape. These observations lead to the conclusion that the soma, initial segment and neighbouring nodes of Ranvier contribute significantly to the shape of the action potential. Contrary to the generally accepted view, it appears that the efferent discharge along motor axons can be initiated without a simultaneous activation of the somato-dendritic or even the initial segment membrane, as revealed by the lack of somato-dendritic and/or initial segment contribution to the shape of the synaptically evoked action potentials.
doi_str_mv 10.1113/jphysiol.1983.sp014529
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1197348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1709177661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5995-62651d996333bfe99fdf5c2dd45969afe619773f7cda1f10f7764463ec18c7603</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EKkvhJ4Byor1k8cSxHV-QYFW-VAkO5Wx5_dG4SuJgeyn773G0uxVcECd7Zp731YxehF4BXgMAeXM39_vkw7AG0ZF1mjG0tBGP0ApaJmrOBXmMVhg3TU04hafoWUp3GAPBQpyhM9Zx2vF2hYZNGGcVfQpTFVylpuxNDKPX5WuqEHMfTrXOvkBzyLZAakgL781SOG9NNYYcYqV-hSlVfqpybyut8kWqtlGVOmU7PkdPXBHaF8f3HH3_cHWz-VRff_34efPuutZUCFqzhlEwQjBCyNZZIZxxVDfGtFQwoZxlIDgnjmujwAF2nLO2ZcRq6DRnmJyjtwffebcdrdFlx6gGOUc_qriXQXn592TyvbwNPyUUY9J2xeD10SCGHzubshx90nYY1GTDLskO0w6A0wJe_hMEjgWU9RgUlB1QHUNK0bqHfQDLJVJ5ilQukcpTpEX48s9rHmTHDMv8_WF-7we7_09XefPl29IghEKDl0MuDia9v-3vfbTyIEtBe5v3snAS5EL-Bi8-xU0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709177661</pqid></control><display><type>article</type><title>Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gogan, P ; Gueritaud, J P ; Tyc-Dumont, S</creator><creatorcontrib>Gogan, P ; Gueritaud, J P ; Tyc-Dumont, S</creatorcontrib><description>Recordings were made from identified central axons at a known distance from their somata, to compare the action potentials resulting from antidromic and synaptic excitation. By taking advantage of the anatomical configuration within the brain stem of the motoneurones innervating the retractor bulbi muscle in the orbit, their axons were penetrated in the VIth nucleus and labelled by electrophoretic injection of horseradish peroxidase. Excitatory post-synaptic potentials recorded in the retractor bulbi axons at about 3 mm from the soma were six times smaller than in the soma. The space constant of the axonal segment between the retractor bulbi and the abducens nucleus was estimated to be 1.7 mm. When the axons propagated action potentials the attenuation was increased to eighteen times due to the nodes of Ranvier intercalated between the soma and the site of recording. Antidromic action potentials displayed stepwise changes in amplitude and shape when stimuli were applied at intervals decreasing from 5 ms to 0.7 ms. The changes were related to the different lengths of refractoriness of the soma, initial segment and axon. Orthodromic action potentials evoked by synaptic excitation displayed similar changes in amplitude and shape. These observations lead to the conclusion that the soma, initial segment and neighbouring nodes of Ranvier contribute significantly to the shape of the action potential. Contrary to the generally accepted view, it appears that the efferent discharge along motor axons can be initiated without a simultaneous activation of the somato-dendritic or even the initial segment membrane, as revealed by the lack of somato-dendritic and/or initial segment contribution to the shape of the synaptically evoked action potentials.</description><identifier>ISSN: 0022-3751</identifier><identifier>EISSN: 1469-7793</identifier><identifier>DOI: 10.1113/jphysiol.1983.sp014529</identifier><identifier>PMID: 6875874</identifier><language>eng</language><publisher>England: The Physiological Society</publisher><subject>Action Potentials ; Animals ; Axons - physiology ; Brain Stem - cytology ; Brain Stem - physiology ; Cats ; Evoked Potentials ; Motor Neurons - physiology ; Synapses - physiology ; Time Factors</subject><ispartof>The Journal of physiology, 1983-02, Vol.335 (1), p.205-220</ispartof><rights>1983 The Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5995-62651d996333bfe99fdf5c2dd45969afe619773f7cda1f10f7764463ec18c7603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1197348/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1197348/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,27901,27902,45550,45551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6875874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gogan, P</creatorcontrib><creatorcontrib>Gueritaud, J P</creatorcontrib><creatorcontrib>Tyc-Dumont, S</creatorcontrib><title>Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem</title><title>The Journal of physiology</title><addtitle>J Physiol</addtitle><description>Recordings were made from identified central axons at a known distance from their somata, to compare the action potentials resulting from antidromic and synaptic excitation. By taking advantage of the anatomical configuration within the brain stem of the motoneurones innervating the retractor bulbi muscle in the orbit, their axons were penetrated in the VIth nucleus and labelled by electrophoretic injection of horseradish peroxidase. Excitatory post-synaptic potentials recorded in the retractor bulbi axons at about 3 mm from the soma were six times smaller than in the soma. The space constant of the axonal segment between the retractor bulbi and the abducens nucleus was estimated to be 1.7 mm. When the axons propagated action potentials the attenuation was increased to eighteen times due to the nodes of Ranvier intercalated between the soma and the site of recording. Antidromic action potentials displayed stepwise changes in amplitude and shape when stimuli were applied at intervals decreasing from 5 ms to 0.7 ms. The changes were related to the different lengths of refractoriness of the soma, initial segment and axon. Orthodromic action potentials evoked by synaptic excitation displayed similar changes in amplitude and shape. These observations lead to the conclusion that the soma, initial segment and neighbouring nodes of Ranvier contribute significantly to the shape of the action potential. Contrary to the generally accepted view, it appears that the efferent discharge along motor axons can be initiated without a simultaneous activation of the somato-dendritic or even the initial segment membrane, as revealed by the lack of somato-dendritic and/or initial segment contribution to the shape of the synaptically evoked action potentials.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>Brain Stem - cytology</subject><subject>Brain Stem - physiology</subject><subject>Cats</subject><subject>Evoked Potentials</subject><subject>Motor Neurons - physiology</subject><subject>Synapses - physiology</subject><subject>Time Factors</subject><issn>0022-3751</issn><issn>1469-7793</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EKkvhJ4Byor1k8cSxHV-QYFW-VAkO5Wx5_dG4SuJgeyn773G0uxVcECd7Zp731YxehF4BXgMAeXM39_vkw7AG0ZF1mjG0tBGP0ApaJmrOBXmMVhg3TU04hafoWUp3GAPBQpyhM9Zx2vF2hYZNGGcVfQpTFVylpuxNDKPX5WuqEHMfTrXOvkBzyLZAakgL781SOG9NNYYcYqV-hSlVfqpybyut8kWqtlGVOmU7PkdPXBHaF8f3HH3_cHWz-VRff_34efPuutZUCFqzhlEwQjBCyNZZIZxxVDfGtFQwoZxlIDgnjmujwAF2nLO2ZcRq6DRnmJyjtwffebcdrdFlx6gGOUc_qriXQXn592TyvbwNPyUUY9J2xeD10SCGHzubshx90nYY1GTDLskO0w6A0wJe_hMEjgWU9RgUlB1QHUNK0bqHfQDLJVJ5ilQukcpTpEX48s9rHmTHDMv8_WF-7we7_09XefPl29IghEKDl0MuDia9v-3vfbTyIEtBe5v3snAS5EL-Bi8-xU0</recordid><startdate>19830201</startdate><enddate>19830201</enddate><creator>Gogan, P</creator><creator>Gueritaud, J P</creator><creator>Tyc-Dumont, S</creator><general>The Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19830201</creationdate><title>Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem</title><author>Gogan, P ; Gueritaud, J P ; Tyc-Dumont, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5995-62651d996333bfe99fdf5c2dd45969afe619773f7cda1f10f7764463ec18c7603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>Brain Stem - cytology</topic><topic>Brain Stem - physiology</topic><topic>Cats</topic><topic>Evoked Potentials</topic><topic>Motor Neurons - physiology</topic><topic>Synapses - physiology</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogan, P</creatorcontrib><creatorcontrib>Gueritaud, J P</creatorcontrib><creatorcontrib>Tyc-Dumont, S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogan, P</au><au>Gueritaud, J P</au><au>Tyc-Dumont, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem</atitle><jtitle>The Journal of physiology</jtitle><addtitle>J Physiol</addtitle><date>1983-02-01</date><risdate>1983</risdate><volume>335</volume><issue>1</issue><spage>205</spage><epage>220</epage><pages>205-220</pages><issn>0022-3751</issn><eissn>1469-7793</eissn><abstract>Recordings were made from identified central axons at a known distance from their somata, to compare the action potentials resulting from antidromic and synaptic excitation. By taking advantage of the anatomical configuration within the brain stem of the motoneurones innervating the retractor bulbi muscle in the orbit, their axons were penetrated in the VIth nucleus and labelled by electrophoretic injection of horseradish peroxidase. Excitatory post-synaptic potentials recorded in the retractor bulbi axons at about 3 mm from the soma were six times smaller than in the soma. The space constant of the axonal segment between the retractor bulbi and the abducens nucleus was estimated to be 1.7 mm. When the axons propagated action potentials the attenuation was increased to eighteen times due to the nodes of Ranvier intercalated between the soma and the site of recording. Antidromic action potentials displayed stepwise changes in amplitude and shape when stimuli were applied at intervals decreasing from 5 ms to 0.7 ms. The changes were related to the different lengths of refractoriness of the soma, initial segment and axon. Orthodromic action potentials evoked by synaptic excitation displayed similar changes in amplitude and shape. These observations lead to the conclusion that the soma, initial segment and neighbouring nodes of Ranvier contribute significantly to the shape of the action potential. Contrary to the generally accepted view, it appears that the efferent discharge along motor axons can be initiated without a simultaneous activation of the somato-dendritic or even the initial segment membrane, as revealed by the lack of somato-dendritic and/or initial segment contribution to the shape of the synaptically evoked action potentials.</abstract><cop>England</cop><pub>The Physiological Society</pub><pmid>6875874</pmid><doi>10.1113/jphysiol.1983.sp014529</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3751
ispartof The Journal of physiology, 1983-02, Vol.335 (1), p.205-220
issn 0022-3751
1469-7793
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1197348
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Action Potentials
Animals
Axons - physiology
Brain Stem - cytology
Brain Stem - physiology
Cats
Evoked Potentials
Motor Neurons - physiology
Synapses - physiology
Time Factors
title Comparison of antidromic and orthodromic action potentials of identified motor axons in the cat's brain stem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20antidromic%20and%20orthodromic%20action%20potentials%20of%20identified%20motor%20axons%20in%20the%20cat's%20brain%20stem&rft.jtitle=The%20Journal%20of%20physiology&rft.au=Gogan,%20P&rft.date=1983-02-01&rft.volume=335&rft.issue=1&rft.spage=205&rft.epage=220&rft.pages=205-220&rft.issn=0022-3751&rft.eissn=1469-7793&rft_id=info:doi/10.1113/jphysiol.1983.sp014529&rft_dat=%3Cproquest_pubme%3E1709177661%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1709177661&rft_id=info:pmid/6875874&rfr_iscdi=true