Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy
Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves m...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2005-02, Vol.76 (2), p.334-339 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 339 |
---|---|
container_issue | 2 |
container_start_page | 334 |
container_title | American journal of human genetics |
container_volume | 76 |
creator | Molinari, Florence Raas-Rothschild, Annick Rio, Marlène Fiermonte, Giuseppe Encha-Razavi, Ferechté Palmieri, Luigi Palmieri, Ferdinando Ben-Neriah, Ziva Kadhom, Noman Vekemans, Michel Attié-Bitach, Tania Munnich, Arnold Rustin, Pierre Colleaux, Laurence |
description | Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H
+ symporters (
SLC25A22, also known as “
GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [
14C]glutamate uniport and [
14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development,
SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern. |
doi_str_mv | 10.1086/427564 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1196378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929707625841</els_id><sourcerecordid>67342677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</originalsourceid><addsrcrecordid>eNpdkl2L1DAYhYMo7uyqP0GKoOBFNUnz0d4Iw7JfMKsg66WENH3jZGmbbpIOzL834wyOzlXg5Mk5b3KC0BuCPxFci8-MSi7YM7QgvJKlEJg_RwuMMS0b2sgzdB7jI8aE1Lh6ic4I51lu2AL9vBsm7QJ0xb1L3qz92AWn--Kmn5MedILiIegxTj6kwo3Fck4--iED38FAjG4DxVfwo05Zut960_vRmeJqcj1McfsKvbC6j_D6sF6gH9dXD5e35erbzd3lclUaLmgqLQXLOK80tbpltpEGS1t3zNZYCMpbjCuopGYWdNdhznlrKiY6ThorW9zK6gJ92ftOcztAZ2BMQfdqCm7QYau8dur_ndGt1S-_UYQ0opJ1Nvi4N1ifHLtdrtROwxQzJinbkMx-OIQF_zRDTGpw0UDf6xH8HJWQFaNC7qZ6dwI--jmM-SEUJQ3nkjTV0c0EH2MA-zeeYLWrVu2rzeDbf-94xA5dZuD9AdDR6N7m3oyLR04wIeo_RnjPQW5k4yCoaByMBrr8D0xSnXen2b8BREu7yA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219557193</pqid></control><display><type>article</type><title>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Molinari, Florence ; Raas-Rothschild, Annick ; Rio, Marlène ; Fiermonte, Giuseppe ; Encha-Razavi, Ferechté ; Palmieri, Luigi ; Palmieri, Ferdinando ; Ben-Neriah, Ziva ; Kadhom, Noman ; Vekemans, Michel ; Attié-Bitach, Tania ; Munnich, Arnold ; Rustin, Pierre ; Colleaux, Laurence</creator><creatorcontrib>Molinari, Florence ; Raas-Rothschild, Annick ; Rio, Marlène ; Fiermonte, Giuseppe ; Encha-Razavi, Ferechté ; Palmieri, Luigi ; Palmieri, Ferdinando ; Ben-Neriah, Ziva ; Kadhom, Noman ; Vekemans, Michel ; Attié-Bitach, Tania ; Munnich, Arnold ; Rustin, Pierre ; Colleaux, Laurence</creatorcontrib><description>Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H
+ symporters (
SLC25A22, also known as “
GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [
14C]glutamate uniport and [
14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development,
SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1086/427564</identifier><identifier>PMID: 15592994</identifier><identifier>CODEN: AJHGAG</identifier><language>eng</language><publisher>Chicago, IL: Elsevier Inc</publisher><subject>Amino Acid Transport System X-AG - genetics ; Amino acids ; Biological and medical sciences ; Child, Preschool ; Electroencephalography ; Epilepsies, Myoclonic - genetics ; Epilepsy ; Female ; General aspects. Genetic counseling ; Genetics ; Genomics ; Glutamic Acid - metabolism ; Glutamic Acid - pharmacokinetics ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Human genetics ; Humans ; Karyotyping ; Life Sciences ; Male ; Medical genetics ; Medical sciences ; Metabolism ; Mitochondria - genetics ; Mitochondrial DNA ; Mutation ; Nervous system (semeiology, syndromes) ; Neurology</subject><ispartof>American journal of human genetics, 2005-02, Vol.76 (2), p.334-339</ispartof><rights>2005 The American Society of Human Genetics</rights><rights>2005 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Feb 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2004 by The American Society of Human Genetics. All rights reserved. 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</citedby><cites>FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</cites><orcidid>0000-0002-0987-7648 ; 0000-0002-6503-2922 ; 0000-0001-5111-7215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196378/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929707625841$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16466864$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15592994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02044724$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Molinari, Florence</creatorcontrib><creatorcontrib>Raas-Rothschild, Annick</creatorcontrib><creatorcontrib>Rio, Marlène</creatorcontrib><creatorcontrib>Fiermonte, Giuseppe</creatorcontrib><creatorcontrib>Encha-Razavi, Ferechté</creatorcontrib><creatorcontrib>Palmieri, Luigi</creatorcontrib><creatorcontrib>Palmieri, Ferdinando</creatorcontrib><creatorcontrib>Ben-Neriah, Ziva</creatorcontrib><creatorcontrib>Kadhom, Noman</creatorcontrib><creatorcontrib>Vekemans, Michel</creatorcontrib><creatorcontrib>Attié-Bitach, Tania</creatorcontrib><creatorcontrib>Munnich, Arnold</creatorcontrib><creatorcontrib>Rustin, Pierre</creatorcontrib><creatorcontrib>Colleaux, Laurence</creatorcontrib><title>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H
+ symporters (
SLC25A22, also known as “
GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [
14C]glutamate uniport and [
14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development,
SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.</description><subject>Amino Acid Transport System X-AG - genetics</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Child, Preschool</subject><subject>Electroencephalography</subject><subject>Epilepsies, Myoclonic - genetics</subject><subject>Epilepsy</subject><subject>Female</subject><subject>General aspects. Genetic counseling</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - pharmacokinetics</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Human genetics</subject><subject>Humans</subject><subject>Karyotyping</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondria - genetics</subject><subject>Mitochondrial DNA</subject><subject>Mutation</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkl2L1DAYhYMo7uyqP0GKoOBFNUnz0d4Iw7JfMKsg66WENH3jZGmbbpIOzL834wyOzlXg5Mk5b3KC0BuCPxFci8-MSi7YM7QgvJKlEJg_RwuMMS0b2sgzdB7jI8aE1Lh6ic4I51lu2AL9vBsm7QJ0xb1L3qz92AWn--Kmn5MedILiIegxTj6kwo3Fck4--iED38FAjG4DxVfwo05Zut960_vRmeJqcj1McfsKvbC6j_D6sF6gH9dXD5e35erbzd3lclUaLmgqLQXLOK80tbpltpEGS1t3zNZYCMpbjCuopGYWdNdhznlrKiY6ThorW9zK6gJ92ftOcztAZ2BMQfdqCm7QYau8dur_ndGt1S-_UYQ0opJ1Nvi4N1ifHLtdrtROwxQzJinbkMx-OIQF_zRDTGpw0UDf6xH8HJWQFaNC7qZ6dwI--jmM-SEUJQ3nkjTV0c0EH2MA-zeeYLWrVu2rzeDbf-94xA5dZuD9AdDR6N7m3oyLR04wIeo_RnjPQW5k4yCoaByMBrr8D0xSnXen2b8BREu7yA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Molinari, Florence</creator><creator>Raas-Rothschild, Annick</creator><creator>Rio, Marlène</creator><creator>Fiermonte, Giuseppe</creator><creator>Encha-Razavi, Ferechté</creator><creator>Palmieri, Luigi</creator><creator>Palmieri, Ferdinando</creator><creator>Ben-Neriah, Ziva</creator><creator>Kadhom, Noman</creator><creator>Vekemans, Michel</creator><creator>Attié-Bitach, Tania</creator><creator>Munnich, Arnold</creator><creator>Rustin, Pierre</creator><creator>Colleaux, Laurence</creator><general>Elsevier Inc</general><general>University of Chicago Press</general><general>Cell Press</general><general>Elsevier (Cell Press)</general><general>The American Society of Human Genetics</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0987-7648</orcidid><orcidid>https://orcid.org/0000-0002-6503-2922</orcidid><orcidid>https://orcid.org/0000-0001-5111-7215</orcidid></search><sort><creationdate>20050201</creationdate><title>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</title><author>Molinari, Florence ; Raas-Rothschild, Annick ; Rio, Marlène ; Fiermonte, Giuseppe ; Encha-Razavi, Ferechté ; Palmieri, Luigi ; Palmieri, Ferdinando ; Ben-Neriah, Ziva ; Kadhom, Noman ; Vekemans, Michel ; Attié-Bitach, Tania ; Munnich, Arnold ; Rustin, Pierre ; Colleaux, Laurence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Transport System X-AG - genetics</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Child, Preschool</topic><topic>Electroencephalography</topic><topic>Epilepsies, Myoclonic - genetics</topic><topic>Epilepsy</topic><topic>Female</topic><topic>General aspects. Genetic counseling</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - pharmacokinetics</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Human genetics</topic><topic>Humans</topic><topic>Karyotyping</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondria - genetics</topic><topic>Mitochondrial DNA</topic><topic>Mutation</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molinari, Florence</creatorcontrib><creatorcontrib>Raas-Rothschild, Annick</creatorcontrib><creatorcontrib>Rio, Marlène</creatorcontrib><creatorcontrib>Fiermonte, Giuseppe</creatorcontrib><creatorcontrib>Encha-Razavi, Ferechté</creatorcontrib><creatorcontrib>Palmieri, Luigi</creatorcontrib><creatorcontrib>Palmieri, Ferdinando</creatorcontrib><creatorcontrib>Ben-Neriah, Ziva</creatorcontrib><creatorcontrib>Kadhom, Noman</creatorcontrib><creatorcontrib>Vekemans, Michel</creatorcontrib><creatorcontrib>Attié-Bitach, Tania</creatorcontrib><creatorcontrib>Munnich, Arnold</creatorcontrib><creatorcontrib>Rustin, Pierre</creatorcontrib><creatorcontrib>Colleaux, Laurence</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molinari, Florence</au><au>Raas-Rothschild, Annick</au><au>Rio, Marlène</au><au>Fiermonte, Giuseppe</au><au>Encha-Razavi, Ferechté</au><au>Palmieri, Luigi</au><au>Palmieri, Ferdinando</au><au>Ben-Neriah, Ziva</au><au>Kadhom, Noman</au><au>Vekemans, Michel</au><au>Attié-Bitach, Tania</au><au>Munnich, Arnold</au><au>Rustin, Pierre</au><au>Colleaux, Laurence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>76</volume><issue>2</issue><spage>334</spage><epage>339</epage><pages>334-339</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><coden>AJHGAG</coden><abstract>Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H
+ symporters (
SLC25A22, also known as “
GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [
14C]glutamate uniport and [
14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development,
SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.</abstract><cop>Chicago, IL</cop><pub>Elsevier Inc</pub><pmid>15592994</pmid><doi>10.1086/427564</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0987-7648</orcidid><orcidid>https://orcid.org/0000-0002-6503-2922</orcidid><orcidid>https://orcid.org/0000-0001-5111-7215</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2005-02, Vol.76 (2), p.334-339 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1196378 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Amino Acid Transport System X-AG - genetics Amino acids Biological and medical sciences Child, Preschool Electroencephalography Epilepsies, Myoclonic - genetics Epilepsy Female General aspects. Genetic counseling Genetics Genomics Glutamic Acid - metabolism Glutamic Acid - pharmacokinetics Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Human genetics Humans Karyotyping Life Sciences Male Medical genetics Medical sciences Metabolism Mitochondria - genetics Mitochondrial DNA Mutation Nervous system (semeiology, syndromes) Neurology |
title | Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Mitochondrial%20Glutamate%20Transport%20in%20Autosomal%20Recessive%20Neonatal%20Myoclonic%20Epilepsy&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Molinari,%20Florence&rft.date=2005-02-01&rft.volume=76&rft.issue=2&rft.spage=334&rft.epage=339&rft.pages=334-339&rft.issn=0002-9297&rft.eissn=1537-6605&rft.coden=AJHGAG&rft_id=info:doi/10.1086/427564&rft_dat=%3Cproquest_pubme%3E67342677%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219557193&rft_id=info:pmid/15592994&rft_els_id=S0002929707625841&rfr_iscdi=true |