Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy

Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2005-02, Vol.76 (2), p.334-339
Hauptverfasser: Molinari, Florence, Raas-Rothschild, Annick, Rio, Marlène, Fiermonte, Giuseppe, Encha-Razavi, Ferechté, Palmieri, Luigi, Palmieri, Ferdinando, Ben-Neriah, Ziva, Kadhom, Noman, Vekemans, Michel, Attié-Bitach, Tania, Munnich, Arnold, Rustin, Pierre, Colleaux, Laurence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 2
container_start_page 334
container_title American journal of human genetics
container_volume 76
creator Molinari, Florence
Raas-Rothschild, Annick
Rio, Marlène
Fiermonte, Giuseppe
Encha-Razavi, Ferechté
Palmieri, Luigi
Palmieri, Ferdinando
Ben-Neriah, Ziva
Kadhom, Noman
Vekemans, Michel
Attié-Bitach, Tania
Munnich, Arnold
Rustin, Pierre
Colleaux, Laurence
description Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H + symporters ( SLC25A22, also known as “ GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [ 14C]glutamate uniport and [ 14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development, SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.
doi_str_mv 10.1086/427564
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1196378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929707625841</els_id><sourcerecordid>67342677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</originalsourceid><addsrcrecordid>eNpdkl2L1DAYhYMo7uyqP0GKoOBFNUnz0d4Iw7JfMKsg66WENH3jZGmbbpIOzL834wyOzlXg5Mk5b3KC0BuCPxFci8-MSi7YM7QgvJKlEJg_RwuMMS0b2sgzdB7jI8aE1Lh6ic4I51lu2AL9vBsm7QJ0xb1L3qz92AWn--Kmn5MedILiIegxTj6kwo3Fck4--iED38FAjG4DxVfwo05Zut960_vRmeJqcj1McfsKvbC6j_D6sF6gH9dXD5e35erbzd3lclUaLmgqLQXLOK80tbpltpEGS1t3zNZYCMpbjCuopGYWdNdhznlrKiY6ThorW9zK6gJ92ftOcztAZ2BMQfdqCm7QYau8dur_ndGt1S-_UYQ0opJ1Nvi4N1ifHLtdrtROwxQzJinbkMx-OIQF_zRDTGpw0UDf6xH8HJWQFaNC7qZ6dwI--jmM-SEUJQ3nkjTV0c0EH2MA-zeeYLWrVu2rzeDbf-94xA5dZuD9AdDR6N7m3oyLR04wIeo_RnjPQW5k4yCoaByMBrr8D0xSnXen2b8BREu7yA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219557193</pqid></control><display><type>article</type><title>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Molinari, Florence ; Raas-Rothschild, Annick ; Rio, Marlène ; Fiermonte, Giuseppe ; Encha-Razavi, Ferechté ; Palmieri, Luigi ; Palmieri, Ferdinando ; Ben-Neriah, Ziva ; Kadhom, Noman ; Vekemans, Michel ; Attié-Bitach, Tania ; Munnich, Arnold ; Rustin, Pierre ; Colleaux, Laurence</creator><creatorcontrib>Molinari, Florence ; Raas-Rothschild, Annick ; Rio, Marlène ; Fiermonte, Giuseppe ; Encha-Razavi, Ferechté ; Palmieri, Luigi ; Palmieri, Ferdinando ; Ben-Neriah, Ziva ; Kadhom, Noman ; Vekemans, Michel ; Attié-Bitach, Tania ; Munnich, Arnold ; Rustin, Pierre ; Colleaux, Laurence</creatorcontrib><description>Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H + symporters ( SLC25A22, also known as “ GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [ 14C]glutamate uniport and [ 14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development, SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1086/427564</identifier><identifier>PMID: 15592994</identifier><identifier>CODEN: AJHGAG</identifier><language>eng</language><publisher>Chicago, IL: Elsevier Inc</publisher><subject>Amino Acid Transport System X-AG - genetics ; Amino acids ; Biological and medical sciences ; Child, Preschool ; Electroencephalography ; Epilepsies, Myoclonic - genetics ; Epilepsy ; Female ; General aspects. Genetic counseling ; Genetics ; Genomics ; Glutamic Acid - metabolism ; Glutamic Acid - pharmacokinetics ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Human genetics ; Humans ; Karyotyping ; Life Sciences ; Male ; Medical genetics ; Medical sciences ; Metabolism ; Mitochondria - genetics ; Mitochondrial DNA ; Mutation ; Nervous system (semeiology, syndromes) ; Neurology</subject><ispartof>American journal of human genetics, 2005-02, Vol.76 (2), p.334-339</ispartof><rights>2005 The American Society of Human Genetics</rights><rights>2005 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Feb 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2004 by The American Society of Human Genetics. All rights reserved. 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</citedby><cites>FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</cites><orcidid>0000-0002-0987-7648 ; 0000-0002-6503-2922 ; 0000-0001-5111-7215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196378/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929707625841$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16466864$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15592994$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02044724$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Molinari, Florence</creatorcontrib><creatorcontrib>Raas-Rothschild, Annick</creatorcontrib><creatorcontrib>Rio, Marlène</creatorcontrib><creatorcontrib>Fiermonte, Giuseppe</creatorcontrib><creatorcontrib>Encha-Razavi, Ferechté</creatorcontrib><creatorcontrib>Palmieri, Luigi</creatorcontrib><creatorcontrib>Palmieri, Ferdinando</creatorcontrib><creatorcontrib>Ben-Neriah, Ziva</creatorcontrib><creatorcontrib>Kadhom, Noman</creatorcontrib><creatorcontrib>Vekemans, Michel</creatorcontrib><creatorcontrib>Attié-Bitach, Tania</creatorcontrib><creatorcontrib>Munnich, Arnold</creatorcontrib><creatorcontrib>Rustin, Pierre</creatorcontrib><creatorcontrib>Colleaux, Laurence</creatorcontrib><title>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H + symporters ( SLC25A22, also known as “ GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [ 14C]glutamate uniport and [ 14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development, SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.</description><subject>Amino Acid Transport System X-AG - genetics</subject><subject>Amino acids</subject><subject>Biological and medical sciences</subject><subject>Child, Preschool</subject><subject>Electroencephalography</subject><subject>Epilepsies, Myoclonic - genetics</subject><subject>Epilepsy</subject><subject>Female</subject><subject>General aspects. Genetic counseling</subject><subject>Genetics</subject><subject>Genomics</subject><subject>Glutamic Acid - metabolism</subject><subject>Glutamic Acid - pharmacokinetics</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Human genetics</subject><subject>Humans</subject><subject>Karyotyping</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondria - genetics</subject><subject>Mitochondrial DNA</subject><subject>Mutation</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neurology</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkl2L1DAYhYMo7uyqP0GKoOBFNUnz0d4Iw7JfMKsg66WENH3jZGmbbpIOzL834wyOzlXg5Mk5b3KC0BuCPxFci8-MSi7YM7QgvJKlEJg_RwuMMS0b2sgzdB7jI8aE1Lh6ic4I51lu2AL9vBsm7QJ0xb1L3qz92AWn--Kmn5MedILiIegxTj6kwo3Fck4--iED38FAjG4DxVfwo05Zut960_vRmeJqcj1McfsKvbC6j_D6sF6gH9dXD5e35erbzd3lclUaLmgqLQXLOK80tbpltpEGS1t3zNZYCMpbjCuopGYWdNdhznlrKiY6ThorW9zK6gJ92ftOcztAZ2BMQfdqCm7QYau8dur_ndGt1S-_UYQ0opJ1Nvi4N1ifHLtdrtROwxQzJinbkMx-OIQF_zRDTGpw0UDf6xH8HJWQFaNC7qZ6dwI--jmM-SEUJQ3nkjTV0c0EH2MA-zeeYLWrVu2rzeDbf-94xA5dZuD9AdDR6N7m3oyLR04wIeo_RnjPQW5k4yCoaByMBrr8D0xSnXen2b8BREu7yA</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Molinari, Florence</creator><creator>Raas-Rothschild, Annick</creator><creator>Rio, Marlène</creator><creator>Fiermonte, Giuseppe</creator><creator>Encha-Razavi, Ferechté</creator><creator>Palmieri, Luigi</creator><creator>Palmieri, Ferdinando</creator><creator>Ben-Neriah, Ziva</creator><creator>Kadhom, Noman</creator><creator>Vekemans, Michel</creator><creator>Attié-Bitach, Tania</creator><creator>Munnich, Arnold</creator><creator>Rustin, Pierre</creator><creator>Colleaux, Laurence</creator><general>Elsevier Inc</general><general>University of Chicago Press</general><general>Cell Press</general><general>Elsevier (Cell Press)</general><general>The American Society of Human Genetics</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0987-7648</orcidid><orcidid>https://orcid.org/0000-0002-6503-2922</orcidid><orcidid>https://orcid.org/0000-0001-5111-7215</orcidid></search><sort><creationdate>20050201</creationdate><title>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</title><author>Molinari, Florence ; Raas-Rothschild, Annick ; Rio, Marlène ; Fiermonte, Giuseppe ; Encha-Razavi, Ferechté ; Palmieri, Luigi ; Palmieri, Ferdinando ; Ben-Neriah, Ziva ; Kadhom, Noman ; Vekemans, Michel ; Attié-Bitach, Tania ; Munnich, Arnold ; Rustin, Pierre ; Colleaux, Laurence</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c562t-f2ef4553a2fab4f97c07f8d4f806625b003e37a4feadd0555bc346d519f7b0b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Transport System X-AG - genetics</topic><topic>Amino acids</topic><topic>Biological and medical sciences</topic><topic>Child, Preschool</topic><topic>Electroencephalography</topic><topic>Epilepsies, Myoclonic - genetics</topic><topic>Epilepsy</topic><topic>Female</topic><topic>General aspects. Genetic counseling</topic><topic>Genetics</topic><topic>Genomics</topic><topic>Glutamic Acid - metabolism</topic><topic>Glutamic Acid - pharmacokinetics</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Human genetics</topic><topic>Humans</topic><topic>Karyotyping</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondria - genetics</topic><topic>Mitochondrial DNA</topic><topic>Mutation</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neurology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molinari, Florence</creatorcontrib><creatorcontrib>Raas-Rothschild, Annick</creatorcontrib><creatorcontrib>Rio, Marlène</creatorcontrib><creatorcontrib>Fiermonte, Giuseppe</creatorcontrib><creatorcontrib>Encha-Razavi, Ferechté</creatorcontrib><creatorcontrib>Palmieri, Luigi</creatorcontrib><creatorcontrib>Palmieri, Ferdinando</creatorcontrib><creatorcontrib>Ben-Neriah, Ziva</creatorcontrib><creatorcontrib>Kadhom, Noman</creatorcontrib><creatorcontrib>Vekemans, Michel</creatorcontrib><creatorcontrib>Attié-Bitach, Tania</creatorcontrib><creatorcontrib>Munnich, Arnold</creatorcontrib><creatorcontrib>Rustin, Pierre</creatorcontrib><creatorcontrib>Colleaux, Laurence</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molinari, Florence</au><au>Raas-Rothschild, Annick</au><au>Rio, Marlène</au><au>Fiermonte, Giuseppe</au><au>Encha-Razavi, Ferechté</au><au>Palmieri, Luigi</au><au>Palmieri, Ferdinando</au><au>Ben-Neriah, Ziva</au><au>Kadhom, Noman</au><au>Vekemans, Michel</au><au>Attié-Bitach, Tania</au><au>Munnich, Arnold</au><au>Rustin, Pierre</au><au>Colleaux, Laurence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>76</volume><issue>2</issue><spage>334</spage><epage>339</epage><pages>334-339</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><coden>AJHGAG</coden><abstract>Severe neonatal epilepsies with suppression-burst pattern are epileptic syndromes with either neonatal onset or onset during the first months of life. These disorders are characterized by a typical electroencephalogram pattern—namely, suppression burst, in which higher-voltage bursts of slow waves mixed with multifocal spikes alternate with isoelectric suppression phases. Here, we report the genetic mapping of an autosomal recessive form of this condition to chromosome 11p15.5 and the identification of a missense mutation (p.Pro206Leu) in the gene encoding one of the two mitochondrial glutamate/H + symporters ( SLC25A22, also known as “ GC1”). The mutation cosegregated with the disease and altered a highly conserved amino acid. Functional analyses showed that glutamate oxidation in cultured skin fibroblasts from patients was strongly defective. Further studies in reconstituted proteoliposomes showed defective [ 14C]glutamate uniport and [ 14C]glutamate/glutamate exchange by mutant protein. Moreover, expression studies showed that, during human development, SLC25A22 is specifically expressed in the brain, within territories proposed to contribute to the genesis and control of myoclonic seizures. These findings provide the first direct molecular link between glutamate mitochondrial metabolism and myoclonic epilepsy and suggest potential insights into the pathophysiological bases of severe neonatal epilepsies with suppression-burst pattern.</abstract><cop>Chicago, IL</cop><pub>Elsevier Inc</pub><pmid>15592994</pmid><doi>10.1086/427564</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0987-7648</orcidid><orcidid>https://orcid.org/0000-0002-6503-2922</orcidid><orcidid>https://orcid.org/0000-0001-5111-7215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2005-02, Vol.76 (2), p.334-339
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1196378
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amino Acid Transport System X-AG - genetics
Amino acids
Biological and medical sciences
Child, Preschool
Electroencephalography
Epilepsies, Myoclonic - genetics
Epilepsy
Female
General aspects. Genetic counseling
Genetics
Genomics
Glutamic Acid - metabolism
Glutamic Acid - pharmacokinetics
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Human genetics
Humans
Karyotyping
Life Sciences
Male
Medical genetics
Medical sciences
Metabolism
Mitochondria - genetics
Mitochondrial DNA
Mutation
Nervous system (semeiology, syndromes)
Neurology
title Impaired Mitochondrial Glutamate Transport in Autosomal Recessive Neonatal Myoclonic Epilepsy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impaired%20Mitochondrial%20Glutamate%20Transport%20in%20Autosomal%20Recessive%20Neonatal%20Myoclonic%20Epilepsy&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Molinari,%20Florence&rft.date=2005-02-01&rft.volume=76&rft.issue=2&rft.spage=334&rft.epage=339&rft.pages=334-339&rft.issn=0002-9297&rft.eissn=1537-6605&rft.coden=AJHGAG&rft_id=info:doi/10.1086/427564&rft_dat=%3Cproquest_pubme%3E67342677%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219557193&rft_id=info:pmid/15592994&rft_els_id=S0002929707625841&rfr_iscdi=true