Direct detection of methylation in genomic DNA
The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene exp...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2005-01, Vol.33 (14), p.e124-e124 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e124 |
---|---|
container_issue | 14 |
container_start_page | e124 |
container_title | Nucleic acids research |
container_volume | 33 |
creator | Bart, A. van Passel, M. W. J. van Amsterdam, K. van der Ende, A. |
description | The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote. |
doi_str_mv | 10.1093/nar/gni121 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21236926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-a5bc83f0e75fbf790db4a0815d9b375f90fbdf2b757f2354dd57a585253c617e3</originalsourceid><addsrcrecordid>eNqFkU1rFEEQhhtRzCbx4g-QwYOHwCRV_TlzEUKi2UCIIBHES9Mz073pONOddM-K-fd2skv8uHgqqt6Hl6p6CXmNcIjQsqNg0tEqeKT4jCyQSVrzVtLnZAEMRI3Amx2ym_MNAHIU_CXZQQktSioX5PDUJ9vP1WDnUnwMVXTVZOfr-9E8tj5UKxvi5Pvq9PJ4n7xwZsz21bbukS8fP1ydLOuLT2fnJ8cXdc8VnWsjur5hDqwSrnOqhaHjBhoUQ9uxMmvBdYOjnRLKUSb4MAhlRCOoYL1EZdkeeb_xvV13kx16G-ZkRn2b_GTSvY7G67-V4K_1Kv7QiA2nVBaDd1uDFO_WNs968rm342iCjeusZcMlBRT_BSlSJttHx7f_gDdxnUL5gqYAUlHFoUAHG6hPMedk3dPKCPohLF3C0puwCvzmzyN_o9t0ClBvAJ9n-_NJN-m7lqr8US-_ftPNJRXLM_lZM_YL8cueoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200672740</pqid></control><display><type>article</type><title>Direct detection of methylation in genomic DNA</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bart, A. ; van Passel, M. W. J. ; van Amsterdam, K. ; van der Ende, A.</creator><creatorcontrib>Bart, A. ; van Passel, M. W. J. ; van Amsterdam, K. ; van der Ende, A.</creatorcontrib><description>The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gni121</identifier><identifier>PMID: 16091626</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>5-Methylcytosine - analysis ; Adenine - analogs & derivatives ; Adenine - analysis ; Cytosine - analogs & derivatives ; Cytosine - analysis ; Deoxyguanine Nucleotides - metabolism ; Dideoxynucleotides ; DNA Methylation ; DNA, Bacterial - chemistry ; DNA, Bacterial - metabolism ; Genome, Bacterial ; Genomics - methods ; Methods Online</subject><ispartof>Nucleic acids research, 2005-01, Vol.33 (14), p.e124-e124</ispartof><rights>Copyright Oxford University Press(England) 2005</rights><rights>The Author 2005. Published by Oxford University Press. All rights reserved 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-a5bc83f0e75fbf790db4a0815d9b375f90fbdf2b757f2354dd57a585253c617e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184226/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184226/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16091626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bart, A.</creatorcontrib><creatorcontrib>van Passel, M. W. J.</creatorcontrib><creatorcontrib>van Amsterdam, K.</creatorcontrib><creatorcontrib>van der Ende, A.</creatorcontrib><title>Direct detection of methylation in genomic DNA</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote.</description><subject>5-Methylcytosine - analysis</subject><subject>Adenine - analogs & derivatives</subject><subject>Adenine - analysis</subject><subject>Cytosine - analogs & derivatives</subject><subject>Cytosine - analysis</subject><subject>Deoxyguanine Nucleotides - metabolism</subject><subject>Dideoxynucleotides</subject><subject>DNA Methylation</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - metabolism</subject><subject>Genome, Bacterial</subject><subject>Genomics - methods</subject><subject>Methods Online</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rFEEQhhtRzCbx4g-QwYOHwCRV_TlzEUKi2UCIIBHES9Mz073pONOddM-K-fd2skv8uHgqqt6Hl6p6CXmNcIjQsqNg0tEqeKT4jCyQSVrzVtLnZAEMRI3Amx2ym_MNAHIU_CXZQQktSioX5PDUJ9vP1WDnUnwMVXTVZOfr-9E8tj5UKxvi5Pvq9PJ4n7xwZsz21bbukS8fP1ydLOuLT2fnJ8cXdc8VnWsjur5hDqwSrnOqhaHjBhoUQ9uxMmvBdYOjnRLKUSb4MAhlRCOoYL1EZdkeeb_xvV13kx16G-ZkRn2b_GTSvY7G67-V4K_1Kv7QiA2nVBaDd1uDFO_WNs968rm342iCjeusZcMlBRT_BSlSJttHx7f_gDdxnUL5gqYAUlHFoUAHG6hPMedk3dPKCPohLF3C0puwCvzmzyN_o9t0ClBvAJ9n-_NJN-m7lqr8US-_ftPNJRXLM_lZM_YL8cueoQ</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Bart, A.</creator><creator>van Passel, M. W. J.</creator><creator>van Amsterdam, K.</creator><creator>van der Ende, A.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050101</creationdate><title>Direct detection of methylation in genomic DNA</title><author>Bart, A. ; van Passel, M. W. J. ; van Amsterdam, K. ; van der Ende, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-a5bc83f0e75fbf790db4a0815d9b375f90fbdf2b757f2354dd57a585253c617e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>5-Methylcytosine - analysis</topic><topic>Adenine - analogs & derivatives</topic><topic>Adenine - analysis</topic><topic>Cytosine - analogs & derivatives</topic><topic>Cytosine - analysis</topic><topic>Deoxyguanine Nucleotides - metabolism</topic><topic>Dideoxynucleotides</topic><topic>DNA Methylation</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - metabolism</topic><topic>Genome, Bacterial</topic><topic>Genomics - methods</topic><topic>Methods Online</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bart, A.</creatorcontrib><creatorcontrib>van Passel, M. W. J.</creatorcontrib><creatorcontrib>van Amsterdam, K.</creatorcontrib><creatorcontrib>van der Ende, A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bart, A.</au><au>van Passel, M. W. J.</au><au>van Amsterdam, K.</au><au>van der Ende, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct detection of methylation in genomic DNA</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>33</volume><issue>14</issue><spage>e124</spage><epage>e124</epage><pages>e124-e124</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N6-methyladenine, 5-methylcytosine and N4-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N6-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N4-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>16091626</pmid><doi>10.1093/nar/gni121</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2005-01, Vol.33 (14), p.e124-e124 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184226 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 5-Methylcytosine - analysis Adenine - analogs & derivatives Adenine - analysis Cytosine - analogs & derivatives Cytosine - analysis Deoxyguanine Nucleotides - metabolism Dideoxynucleotides DNA Methylation DNA, Bacterial - chemistry DNA, Bacterial - metabolism Genome, Bacterial Genomics - methods Methods Online |
title | Direct detection of methylation in genomic DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T22%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20detection%20of%20methylation%20in%20genomic%20DNA&rft.jtitle=Nucleic%20acids%20research&rft.au=Bart,%20A.&rft.date=2005-01-01&rft.volume=33&rft.issue=14&rft.spage=e124&rft.epage=e124&rft.pages=e124-e124&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gni121&rft_dat=%3Cproquest_pubme%3E21236926%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200672740&rft_id=info:pmid/16091626&rfr_iscdi=true |