Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements
The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for io...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1997-12, Vol.73 (6), p.3211-3224 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3224 |
---|---|
container_issue | 6 |
container_start_page | 3211 |
container_title | Biophysical journal |
container_volume | 73 |
creator | Kuehner, D.E. Heyer, C. Rämsch, C. Fornefeld, U.M. Blanch, H.W. Prausnitz, J.M. |
description | The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation. |
doi_str_mv | 10.1016/S0006-3495(97)78346-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1181223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349597783462</els_id><sourcerecordid>79491477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-c8cb98063003f6e6da671ab3ecebced70069c6fc8c684b2277b8f090156998b13</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCobAs_oVK4IHoI2I7jjwsVqvioVIkDcLYc52XXKLGL7VQKvx6nWa3gxOkdZt7MmzcIXRL8lmDC333DGPO6Yap9o8SVkA3jNX2CdqRltMZY8qdod6I8R-cp_cSY0BaTM3SmGGG0oTvkbn2GaGx2wacqDNW4pPB7maByvrLBW_A5mgx9BSPYHMO4ZKhSGOdtY4hhqvrFm8nZanT7Q66TNbloOr-vJjBpjjAVkfQCPRvMmODlcV6gH58-fr_5Ut99_Xx78-GutkzKXFtpOyUxbzBuBg68N1wQ0zVgobPQi5JIWT4UGpeso1SITg5YYdJypWRHmgv0ftO9n7sJ-i3AqO-jm0xcdDBO_4t4d9D78KAJkYTSpgi82gRCyk4n6zLYQ3mFL_m1EEpgWjivjyYx_JohZT25ZGEcjYcwJy0UU4QJUYjtRrQxpBRhOB1CsF571I896rUkrYR-7FGvBpd_pzhtHYsr-PWGQ3nlg4O4Hgqlrt7F9c4-uP84_AGVibE3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79491477</pqid></control><display><type>article</type><title>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kuehner, D.E. ; Heyer, C. ; Rämsch, C. ; Fornefeld, U.M. ; Blanch, H.W. ; Prausnitz, J.M.</creator><creatorcontrib>Kuehner, D.E. ; Heyer, C. ; Rämsch, C. ; Fornefeld, U.M. ; Blanch, H.W. ; Prausnitz, J.M. ; Lawrence Berkeley National Lab., CA (US)</creatorcontrib><description>The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(97)78346-2</identifier><identifier>PMID: 9414232</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ammonium Sulfate ; Animals ; AQUEOUS SOLUTIONS ; BASIC BIOLOGICAL SCIENCES ; Biophysical Phenomena ; Biophysics ; Chickens ; Diffusion ; ELECTROLYTES ; Female ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Light ; LIGHT SCATTERING ; LYSOZYME ; Macromolecular Substances ; Models, Chemical ; Muramidase - chemistry ; Osmolar Concentration ; Scattering, Radiation ; Solutions ; Water</subject><ispartof>Biophysical journal, 1997-12, Vol.73 (6), p.3211-3224</ispartof><rights>1997 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-c8cb98063003f6e6da671ab3ecebced70069c6fc8c684b2277b8f090156998b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181223/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349597783462$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9414232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/779702$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuehner, D.E.</creatorcontrib><creatorcontrib>Heyer, C.</creatorcontrib><creatorcontrib>Rämsch, C.</creatorcontrib><creatorcontrib>Fornefeld, U.M.</creatorcontrib><creatorcontrib>Blanch, H.W.</creatorcontrib><creatorcontrib>Prausnitz, J.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab., CA (US)</creatorcontrib><title>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.</description><subject>Ammonium Sulfate</subject><subject>Animals</subject><subject>AQUEOUS SOLUTIONS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Chickens</subject><subject>Diffusion</subject><subject>ELECTROLYTES</subject><subject>Female</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>Light</subject><subject>LIGHT SCATTERING</subject><subject>LYSOZYME</subject><subject>Macromolecular Substances</subject><subject>Models, Chemical</subject><subject>Muramidase - chemistry</subject><subject>Osmolar Concentration</subject><subject>Scattering, Radiation</subject><subject>Solutions</subject><subject>Water</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCobAs_oVK4IHoI2I7jjwsVqvioVIkDcLYc52XXKLGL7VQKvx6nWa3gxOkdZt7MmzcIXRL8lmDC333DGPO6Yap9o8SVkA3jNX2CdqRltMZY8qdod6I8R-cp_cSY0BaTM3SmGGG0oTvkbn2GaGx2wacqDNW4pPB7maByvrLBW_A5mgx9BSPYHMO4ZKhSGOdtY4hhqvrFm8nZanT7Q66TNbloOr-vJjBpjjAVkfQCPRvMmODlcV6gH58-fr_5Ut99_Xx78-GutkzKXFtpOyUxbzBuBg68N1wQ0zVgobPQi5JIWT4UGpeso1SITg5YYdJypWRHmgv0ftO9n7sJ-i3AqO-jm0xcdDBO_4t4d9D78KAJkYTSpgi82gRCyk4n6zLYQ3mFL_m1EEpgWjivjyYx_JohZT25ZGEcjYcwJy0UU4QJUYjtRrQxpBRhOB1CsF571I896rUkrYR-7FGvBpd_pzhtHYsr-PWGQ3nlg4O4Hgqlrt7F9c4-uP84_AGVibE3</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Kuehner, D.E.</creator><creator>Heyer, C.</creator><creator>Rämsch, C.</creator><creator>Fornefeld, U.M.</creator><creator>Blanch, H.W.</creator><creator>Prausnitz, J.M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19971201</creationdate><title>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</title><author>Kuehner, D.E. ; Heyer, C. ; Rämsch, C. ; Fornefeld, U.M. ; Blanch, H.W. ; Prausnitz, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-c8cb98063003f6e6da671ab3ecebced70069c6fc8c684b2277b8f090156998b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Ammonium Sulfate</topic><topic>Animals</topic><topic>AQUEOUS SOLUTIONS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Chickens</topic><topic>Diffusion</topic><topic>ELECTROLYTES</topic><topic>Female</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>Light</topic><topic>LIGHT SCATTERING</topic><topic>LYSOZYME</topic><topic>Macromolecular Substances</topic><topic>Models, Chemical</topic><topic>Muramidase - chemistry</topic><topic>Osmolar Concentration</topic><topic>Scattering, Radiation</topic><topic>Solutions</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehner, D.E.</creatorcontrib><creatorcontrib>Heyer, C.</creatorcontrib><creatorcontrib>Rämsch, C.</creatorcontrib><creatorcontrib>Fornefeld, U.M.</creatorcontrib><creatorcontrib>Blanch, H.W.</creatorcontrib><creatorcontrib>Prausnitz, J.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab., CA (US)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehner, D.E.</au><au>Heyer, C.</au><au>Rämsch, C.</au><au>Fornefeld, U.M.</au><au>Blanch, H.W.</au><au>Prausnitz, J.M.</au><aucorp>Lawrence Berkeley National Lab., CA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1997-12-01</date><risdate>1997</risdate><volume>73</volume><issue>6</issue><spage>3211</spage><epage>3224</epage><pages>3211-3224</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9414232</pmid><doi>10.1016/S0006-3495(97)78346-2</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1997-12, Vol.73 (6), p.3211-3224 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1181223 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Ammonium Sulfate Animals AQUEOUS SOLUTIONS BASIC BIOLOGICAL SCIENCES Biophysical Phenomena Biophysics Chickens Diffusion ELECTROLYTES Female Hydrogen-Ion Concentration In Vitro Techniques Light LIGHT SCATTERING LYSOZYME Macromolecular Substances Models, Chemical Muramidase - chemistry Osmolar Concentration Scattering, Radiation Solutions Water |
title | Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20lysozyme%20in%20concentrated%20electrolyte%20solutions%20from%20dynamic%20light-scattering%20measurements&rft.jtitle=Biophysical%20journal&rft.au=Kuehner,%20D.E.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.,%20CA%20(US)&rft.date=1997-12-01&rft.volume=73&rft.issue=6&rft.spage=3211&rft.epage=3224&rft.pages=3211-3224&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(97)78346-2&rft_dat=%3Cproquest_pubme%3E79491477%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79491477&rft_id=info:pmid/9414232&rft_els_id=S0006349597783462&rfr_iscdi=true |