Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements

The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for io...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1997-12, Vol.73 (6), p.3211-3224
Hauptverfasser: Kuehner, D.E., Heyer, C., Rämsch, C., Fornefeld, U.M., Blanch, H.W., Prausnitz, J.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3224
container_issue 6
container_start_page 3211
container_title Biophysical journal
container_volume 73
creator Kuehner, D.E.
Heyer, C.
Rämsch, C.
Fornefeld, U.M.
Blanch, H.W.
Prausnitz, J.M.
description The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.
doi_str_mv 10.1016/S0006-3495(97)78346-2
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1181223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349597783462</els_id><sourcerecordid>79491477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-c8cb98063003f6e6da671ab3ecebced70069c6fc8c684b2277b8f090156998b13</originalsourceid><addsrcrecordid>eNqFUU1v1DAUtBCobAs_oVK4IHoI2I7jjwsVqvioVIkDcLYc52XXKLGL7VQKvx6nWa3gxOkdZt7MmzcIXRL8lmDC333DGPO6Yap9o8SVkA3jNX2CdqRltMZY8qdod6I8R-cp_cSY0BaTM3SmGGG0oTvkbn2GaGx2wacqDNW4pPB7maByvrLBW_A5mgx9BSPYHMO4ZKhSGOdtY4hhqvrFm8nZanT7Q66TNbloOr-vJjBpjjAVkfQCPRvMmODlcV6gH58-fr_5Ut99_Xx78-GutkzKXFtpOyUxbzBuBg68N1wQ0zVgobPQi5JIWT4UGpeso1SITg5YYdJypWRHmgv0ftO9n7sJ-i3AqO-jm0xcdDBO_4t4d9D78KAJkYTSpgi82gRCyk4n6zLYQ3mFL_m1EEpgWjivjyYx_JohZT25ZGEcjYcwJy0UU4QJUYjtRrQxpBRhOB1CsF571I896rUkrYR-7FGvBpd_pzhtHYsr-PWGQ3nlg4O4Hgqlrt7F9c4-uP84_AGVibE3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79491477</pqid></control><display><type>article</type><title>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kuehner, D.E. ; Heyer, C. ; Rämsch, C. ; Fornefeld, U.M. ; Blanch, H.W. ; Prausnitz, J.M.</creator><creatorcontrib>Kuehner, D.E. ; Heyer, C. ; Rämsch, C. ; Fornefeld, U.M. ; Blanch, H.W. ; Prausnitz, J.M. ; Lawrence Berkeley National Lab., CA (US)</creatorcontrib><description>The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(97)78346-2</identifier><identifier>PMID: 9414232</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Ammonium Sulfate ; Animals ; AQUEOUS SOLUTIONS ; BASIC BIOLOGICAL SCIENCES ; Biophysical Phenomena ; Biophysics ; Chickens ; Diffusion ; ELECTROLYTES ; Female ; Hydrogen-Ion Concentration ; In Vitro Techniques ; Light ; LIGHT SCATTERING ; LYSOZYME ; Macromolecular Substances ; Models, Chemical ; Muramidase - chemistry ; Osmolar Concentration ; Scattering, Radiation ; Solutions ; Water</subject><ispartof>Biophysical journal, 1997-12, Vol.73 (6), p.3211-3224</ispartof><rights>1997 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-c8cb98063003f6e6da671ab3ecebced70069c6fc8c684b2277b8f090156998b13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1181223/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349597783462$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9414232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/779702$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuehner, D.E.</creatorcontrib><creatorcontrib>Heyer, C.</creatorcontrib><creatorcontrib>Rämsch, C.</creatorcontrib><creatorcontrib>Fornefeld, U.M.</creatorcontrib><creatorcontrib>Blanch, H.W.</creatorcontrib><creatorcontrib>Prausnitz, J.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab., CA (US)</creatorcontrib><title>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.</description><subject>Ammonium Sulfate</subject><subject>Animals</subject><subject>AQUEOUS SOLUTIONS</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Chickens</subject><subject>Diffusion</subject><subject>ELECTROLYTES</subject><subject>Female</subject><subject>Hydrogen-Ion Concentration</subject><subject>In Vitro Techniques</subject><subject>Light</subject><subject>LIGHT SCATTERING</subject><subject>LYSOZYME</subject><subject>Macromolecular Substances</subject><subject>Models, Chemical</subject><subject>Muramidase - chemistry</subject><subject>Osmolar Concentration</subject><subject>Scattering, Radiation</subject><subject>Solutions</subject><subject>Water</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1v1DAUtBCobAs_oVK4IHoI2I7jjwsVqvioVIkDcLYc52XXKLGL7VQKvx6nWa3gxOkdZt7MmzcIXRL8lmDC333DGPO6Yap9o8SVkA3jNX2CdqRltMZY8qdod6I8R-cp_cSY0BaTM3SmGGG0oTvkbn2GaGx2wacqDNW4pPB7maByvrLBW_A5mgx9BSPYHMO4ZKhSGOdtY4hhqvrFm8nZanT7Q66TNbloOr-vJjBpjjAVkfQCPRvMmODlcV6gH58-fr_5Ut99_Xx78-GutkzKXFtpOyUxbzBuBg68N1wQ0zVgobPQi5JIWT4UGpeso1SITg5YYdJypWRHmgv0ftO9n7sJ-i3AqO-jm0xcdDBO_4t4d9D78KAJkYTSpgi82gRCyk4n6zLYQ3mFL_m1EEpgWjivjyYx_JohZT25ZGEcjYcwJy0UU4QJUYjtRrQxpBRhOB1CsF571I896rUkrYR-7FGvBpd_pzhtHYsr-PWGQ3nlg4O4Hgqlrt7F9c4-uP84_AGVibE3</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Kuehner, D.E.</creator><creator>Heyer, C.</creator><creator>Rämsch, C.</creator><creator>Fornefeld, U.M.</creator><creator>Blanch, H.W.</creator><creator>Prausnitz, J.M.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>19971201</creationdate><title>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</title><author>Kuehner, D.E. ; Heyer, C. ; Rämsch, C. ; Fornefeld, U.M. ; Blanch, H.W. ; Prausnitz, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-c8cb98063003f6e6da671ab3ecebced70069c6fc8c684b2277b8f090156998b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Ammonium Sulfate</topic><topic>Animals</topic><topic>AQUEOUS SOLUTIONS</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Chickens</topic><topic>Diffusion</topic><topic>ELECTROLYTES</topic><topic>Female</topic><topic>Hydrogen-Ion Concentration</topic><topic>In Vitro Techniques</topic><topic>Light</topic><topic>LIGHT SCATTERING</topic><topic>LYSOZYME</topic><topic>Macromolecular Substances</topic><topic>Models, Chemical</topic><topic>Muramidase - chemistry</topic><topic>Osmolar Concentration</topic><topic>Scattering, Radiation</topic><topic>Solutions</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuehner, D.E.</creatorcontrib><creatorcontrib>Heyer, C.</creatorcontrib><creatorcontrib>Rämsch, C.</creatorcontrib><creatorcontrib>Fornefeld, U.M.</creatorcontrib><creatorcontrib>Blanch, H.W.</creatorcontrib><creatorcontrib>Prausnitz, J.M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab., CA (US)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuehner, D.E.</au><au>Heyer, C.</au><au>Rämsch, C.</au><au>Fornefeld, U.M.</au><au>Blanch, H.W.</au><au>Prausnitz, J.M.</au><aucorp>Lawrence Berkeley National Lab., CA (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1997-12-01</date><risdate>1997</risdate><volume>73</volume><issue>6</issue><spage>3211</spage><epage>3224</epage><pages>3211-3224</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4–7 and ionic strength 0.05–5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9414232</pmid><doi>10.1016/S0006-3495(97)78346-2</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1997-12, Vol.73 (6), p.3211-3224
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1181223
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Ammonium Sulfate
Animals
AQUEOUS SOLUTIONS
BASIC BIOLOGICAL SCIENCES
Biophysical Phenomena
Biophysics
Chickens
Diffusion
ELECTROLYTES
Female
Hydrogen-Ion Concentration
In Vitro Techniques
Light
LIGHT SCATTERING
LYSOZYME
Macromolecular Substances
Models, Chemical
Muramidase - chemistry
Osmolar Concentration
Scattering, Radiation
Solutions
Water
title Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20lysozyme%20in%20concentrated%20electrolyte%20solutions%20from%20dynamic%20light-scattering%20measurements&rft.jtitle=Biophysical%20journal&rft.au=Kuehner,%20D.E.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.,%20CA%20(US)&rft.date=1997-12-01&rft.volume=73&rft.issue=6&rft.spage=3211&rft.epage=3224&rft.pages=3211-3224&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(97)78346-2&rft_dat=%3Cproquest_pubme%3E79491477%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=79491477&rft_id=info:pmid/9414232&rft_els_id=S0006349597783462&rfr_iscdi=true