Amplification of electromagnetic signals by ion channels
Cells may respond to the exposure of low-frequency electromagnetic fields with changes in cell division, ion influx, chemical reaction rates, etc. The chain of events leading to such responses is difficult to study, mainly because of extremely small energies associated with low-frequency fields, usu...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1997-12, Vol.73 (6), p.3056-3065 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cells may respond to the exposure of low-frequency electromagnetic fields with changes in cell division, ion influx, chemical reaction rates, etc. The chain of events leading to such responses is difficult to study, mainly because of extremely small energies associated with low-frequency fields, usually much smaller than the thermal noise level. However, the presence of stochastic systems (for instance, ion channels) provides a basis for signal amplification, and could therefore, despite the low signal-to-noise ratio of the primary response, lead to the transmission of weak signals along the signaling pathways of cells. We have explored this possibility for an ion channel model, and we present a theory, based on the formalism of stochastically driven processes, that relates the time averages of the ion channel currents to the amplitude and frequency of the applied signal. It is concluded from this theory that the signal-to-noise ratio increases with the number of channels, the magnitude of the rate constants, and the frequency response of the intracellular sensing system (for instance, a calcium oscillator). The amplification properties of the stochastic system are further deduced from numerical simulations carried out on the model, which consists of multiple identical two-state channels, and the behavior for different parameters is examined. Numerical estimates of the parameters show that under optimum conditions, even very weak low-frequency electromagnetic signals ( |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(97)78333-4 |