Molecular motions within the pore of voltage-dependent sodium channels
The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relev...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 1997-08, Vol.73 (2), p.603-613 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 613 |
---|---|
container_issue | 2 |
container_start_page | 603 |
container_title | Biophysical journal |
container_volume | 73 |
creator | Bénitah, J.P. Ranjan, R. Yamagishi, T. Janecki, M. Tomaselli, G.F. Marban, E. |
description | The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions. |
doi_str_mv | 10.1016/S0006-3495(97)78096-2 |
format | Article |
fullrecord | <record><control><sourceid>hal_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1180960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349597780962</els_id><sourcerecordid>oai_HAL_inserm_04409723v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-2554ab99a01d3a4ccd4440166e72cb75ad63cd607897c0e57a9ee232a01301a53</originalsourceid><addsrcrecordid>eNqFUU1PGzEUtCoQDdCfgLTHIrHl2btex5eiCJGmUhAH6Nly7Jesq107sjdB_HscgqKWCycf5sPzZgi5oPCDAm2uHwGgKata8u9SXIoxyKZkX8iI8pqVAOPmiIwOlK_kNKW_AJRxoCfkRDJOs2REpvehQ7PpdCz6MLjgU_Hshtb5YmixWIeIRVgW29ANeoWlxTV6i34oUrBu0xem1d5jl87J8VJ3Cb-9v2fkz_Tu6XZWzh9-_b6dzEvDGz6UjPNaL6TUQG2la2NsXdf5mAYFMwvBtW0qYxsQYykMIBdaIrKKZX4FVPPqjPzc-643ix6tyVGi7tQ6ul7HFxW0U_8j3rVqFbaK0l1BkA2u9gbtB9lsMlfOJ4y9gpxJClZtaabzPd3EkFLE5UFDQe1mUG8zqF3HSgr1NoNiWXfxb86D6r33jN_s8dwdbh1GlYxDb9C6iGZQNrhPfngFZqiYSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular motions within the pore of voltage-dependent sodium channels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Bénitah, J.P. ; Ranjan, R. ; Yamagishi, T. ; Janecki, M. ; Tomaselli, G.F. ; Marban, E.</creator><creatorcontrib>Bénitah, J.P. ; Ranjan, R. ; Yamagishi, T. ; Janecki, M. ; Tomaselli, G.F. ; Marban, E.</creatorcontrib><description>The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(97)78096-2</identifier><identifier>PMID: 9251780</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Calorimetry ; Cysteine ; Disulfides ; Female ; Hydrogen Bonding ; Kinetics ; Life Sciences ; Membrane Potentials ; Models, Molecular ; Muscle, Skeletal - physiology ; Mutagenesis, Site-Directed ; Oocytes - physiology ; Point Mutation ; Potassium Channels - biosynthesis ; Potassium Channels - chemistry ; Potassium Channels - physiology ; Protein Conformation ; Rats ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Xenopus laevis</subject><ispartof>Biophysical journal, 1997-08, Vol.73 (2), p.603-613</ispartof><rights>1997 The Biophysical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-2554ab99a01d3a4ccd4440166e72cb75ad63cd607897c0e57a9ee232a01301a53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180960/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349597780962$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9251780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-04409723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bénitah, J.P.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Yamagishi, T.</creatorcontrib><creatorcontrib>Janecki, M.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><title>Molecular motions within the pore of voltage-dependent sodium channels</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Calorimetry</subject><subject>Cysteine</subject><subject>Disulfides</subject><subject>Female</subject><subject>Hydrogen Bonding</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Potentials</subject><subject>Models, Molecular</subject><subject>Muscle, Skeletal - physiology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oocytes - physiology</subject><subject>Point Mutation</subject><subject>Potassium Channels - biosynthesis</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - physiology</subject><subject>Protein Conformation</subject><subject>Rats</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Xenopus laevis</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1PGzEUtCoQDdCfgLTHIrHl2btex5eiCJGmUhAH6Nly7Jesq107sjdB_HscgqKWCycf5sPzZgi5oPCDAm2uHwGgKata8u9SXIoxyKZkX8iI8pqVAOPmiIwOlK_kNKW_AJRxoCfkRDJOs2REpvehQ7PpdCz6MLjgU_Hshtb5YmixWIeIRVgW29ANeoWlxTV6i34oUrBu0xem1d5jl87J8VJ3Cb-9v2fkz_Tu6XZWzh9-_b6dzEvDGz6UjPNaL6TUQG2la2NsXdf5mAYFMwvBtW0qYxsQYykMIBdaIrKKZX4FVPPqjPzc-643ix6tyVGi7tQ6ul7HFxW0U_8j3rVqFbaK0l1BkA2u9gbtB9lsMlfOJ4y9gpxJClZtaabzPd3EkFLE5UFDQe1mUG8zqF3HSgr1NoNiWXfxb86D6r33jN_s8dwdbh1GlYxDb9C6iGZQNrhPfngFZqiYSg</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Bénitah, J.P.</creator><creator>Ranjan, R.</creator><creator>Yamagishi, T.</creator><creator>Janecki, M.</creator><creator>Tomaselli, G.F.</creator><creator>Marban, E.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>19970801</creationdate><title>Molecular motions within the pore of voltage-dependent sodium channels</title><author>Bénitah, J.P. ; Ranjan, R. ; Yamagishi, T. ; Janecki, M. ; Tomaselli, G.F. ; Marban, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-2554ab99a01d3a4ccd4440166e72cb75ad63cd607897c0e57a9ee232a01301a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Calorimetry</topic><topic>Cysteine</topic><topic>Disulfides</topic><topic>Female</topic><topic>Hydrogen Bonding</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Potentials</topic><topic>Models, Molecular</topic><topic>Muscle, Skeletal - physiology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oocytes - physiology</topic><topic>Point Mutation</topic><topic>Potassium Channels - biosynthesis</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - physiology</topic><topic>Protein Conformation</topic><topic>Rats</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bénitah, J.P.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Yamagishi, T.</creatorcontrib><creatorcontrib>Janecki, M.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bénitah, J.P.</au><au>Ranjan, R.</au><au>Yamagishi, T.</au><au>Janecki, M.</au><au>Tomaselli, G.F.</au><au>Marban, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular motions within the pore of voltage-dependent sodium channels</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1997-08-01</date><risdate>1997</risdate><volume>73</volume><issue>2</issue><spage>603</spage><epage>613</epage><pages>603-613</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9251780</pmid><doi>10.1016/S0006-3495(97)78096-2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1997-08, Vol.73 (2), p.603-613 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1180960 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Amino Acid Sequence Animals Calorimetry Cysteine Disulfides Female Hydrogen Bonding Kinetics Life Sciences Membrane Potentials Models, Molecular Muscle, Skeletal - physiology Mutagenesis, Site-Directed Oocytes - physiology Point Mutation Potassium Channels - biosynthesis Potassium Channels - chemistry Potassium Channels - physiology Protein Conformation Rats Recombinant Proteins - biosynthesis Recombinant Proteins - chemistry Xenopus laevis |
title | Molecular motions within the pore of voltage-dependent sodium channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20motions%20within%20the%20pore%20of%20voltage-dependent%20sodium%20channels&rft.jtitle=Biophysical%20journal&rft.au=B%C3%A9nitah,%20J.P.&rft.date=1997-08-01&rft.volume=73&rft.issue=2&rft.spage=603&rft.epage=613&rft.pages=603-613&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(97)78096-2&rft_dat=%3Chal_pubme%3Eoai_HAL_inserm_04409723v1%3C/hal_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/9251780&rft_els_id=S0006349597780962&rfr_iscdi=true |