Molecular motions within the pore of voltage-dependent sodium channels

The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 1997-08, Vol.73 (2), p.603-613
Hauptverfasser: Bénitah, J.P., Ranjan, R., Yamagishi, T., Janecki, M., Tomaselli, G.F., Marban, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 2
container_start_page 603
container_title Biophysical journal
container_volume 73
creator Bénitah, J.P.
Ranjan, R.
Yamagishi, T.
Janecki, M.
Tomaselli, G.F.
Marban, E.
description The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions.
doi_str_mv 10.1016/S0006-3495(97)78096-2
format Article
fullrecord <record><control><sourceid>hal_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1180960</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349597780962</els_id><sourcerecordid>oai_HAL_inserm_04409723v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-2554ab99a01d3a4ccd4440166e72cb75ad63cd607897c0e57a9ee232a01301a53</originalsourceid><addsrcrecordid>eNqFUU1PGzEUtCoQDdCfgLTHIrHl2btex5eiCJGmUhAH6Nly7Jesq107sjdB_HscgqKWCycf5sPzZgi5oPCDAm2uHwGgKata8u9SXIoxyKZkX8iI8pqVAOPmiIwOlK_kNKW_AJRxoCfkRDJOs2REpvehQ7PpdCz6MLjgU_Hshtb5YmixWIeIRVgW29ANeoWlxTV6i34oUrBu0xem1d5jl87J8VJ3Cb-9v2fkz_Tu6XZWzh9-_b6dzEvDGz6UjPNaL6TUQG2la2NsXdf5mAYFMwvBtW0qYxsQYykMIBdaIrKKZX4FVPPqjPzc-643ix6tyVGi7tQ6ul7HFxW0U_8j3rVqFbaK0l1BkA2u9gbtB9lsMlfOJ4y9gpxJClZtaabzPd3EkFLE5UFDQe1mUG8zqF3HSgr1NoNiWXfxb86D6r33jN_s8dwdbh1GlYxDb9C6iGZQNrhPfngFZqiYSg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular motions within the pore of voltage-dependent sodium channels</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Bénitah, J.P. ; Ranjan, R. ; Yamagishi, T. ; Janecki, M. ; Tomaselli, G.F. ; Marban, E.</creator><creatorcontrib>Bénitah, J.P. ; Ranjan, R. ; Yamagishi, T. ; Janecki, M. ; Tomaselli, G.F. ; Marban, E.</creatorcontrib><description>The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(97)78096-2</identifier><identifier>PMID: 9251780</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Calorimetry ; Cysteine ; Disulfides ; Female ; Hydrogen Bonding ; Kinetics ; Life Sciences ; Membrane Potentials ; Models, Molecular ; Muscle, Skeletal - physiology ; Mutagenesis, Site-Directed ; Oocytes - physiology ; Point Mutation ; Potassium Channels - biosynthesis ; Potassium Channels - chemistry ; Potassium Channels - physiology ; Protein Conformation ; Rats ; Recombinant Proteins - biosynthesis ; Recombinant Proteins - chemistry ; Xenopus laevis</subject><ispartof>Biophysical journal, 1997-08, Vol.73 (2), p.603-613</ispartof><rights>1997 The Biophysical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-2554ab99a01d3a4ccd4440166e72cb75ad63cd607897c0e57a9ee232a01301a53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180960/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349597780962$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9251780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inserm.hal.science/inserm-04409723$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bénitah, J.P.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Yamagishi, T.</creatorcontrib><creatorcontrib>Janecki, M.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><title>Molecular motions within the pore of voltage-dependent sodium channels</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Calorimetry</subject><subject>Cysteine</subject><subject>Disulfides</subject><subject>Female</subject><subject>Hydrogen Bonding</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Potentials</subject><subject>Models, Molecular</subject><subject>Muscle, Skeletal - physiology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Oocytes - physiology</subject><subject>Point Mutation</subject><subject>Potassium Channels - biosynthesis</subject><subject>Potassium Channels - chemistry</subject><subject>Potassium Channels - physiology</subject><subject>Protein Conformation</subject><subject>Rats</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Recombinant Proteins - chemistry</subject><subject>Xenopus laevis</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUU1PGzEUtCoQDdCfgLTHIrHl2btex5eiCJGmUhAH6Nly7Jesq107sjdB_HscgqKWCycf5sPzZgi5oPCDAm2uHwGgKata8u9SXIoxyKZkX8iI8pqVAOPmiIwOlK_kNKW_AJRxoCfkRDJOs2REpvehQ7PpdCz6MLjgU_Hshtb5YmixWIeIRVgW29ANeoWlxTV6i34oUrBu0xem1d5jl87J8VJ3Cb-9v2fkz_Tu6XZWzh9-_b6dzEvDGz6UjPNaL6TUQG2la2NsXdf5mAYFMwvBtW0qYxsQYykMIBdaIrKKZX4FVPPqjPzc-643ix6tyVGi7tQ6ul7HFxW0U_8j3rVqFbaK0l1BkA2u9gbtB9lsMlfOJ4y9gpxJClZtaabzPd3EkFLE5UFDQe1mUG8zqF3HSgr1NoNiWXfxb86D6r33jN_s8dwdbh1GlYxDb9C6iGZQNrhPfngFZqiYSg</recordid><startdate>19970801</startdate><enddate>19970801</enddate><creator>Bénitah, J.P.</creator><creator>Ranjan, R.</creator><creator>Yamagishi, T.</creator><creator>Janecki, M.</creator><creator>Tomaselli, G.F.</creator><creator>Marban, E.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope></search><sort><creationdate>19970801</creationdate><title>Molecular motions within the pore of voltage-dependent sodium channels</title><author>Bénitah, J.P. ; Ranjan, R. ; Yamagishi, T. ; Janecki, M. ; Tomaselli, G.F. ; Marban, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-2554ab99a01d3a4ccd4440166e72cb75ad63cd607897c0e57a9ee232a01301a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Calorimetry</topic><topic>Cysteine</topic><topic>Disulfides</topic><topic>Female</topic><topic>Hydrogen Bonding</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Potentials</topic><topic>Models, Molecular</topic><topic>Muscle, Skeletal - physiology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Oocytes - physiology</topic><topic>Point Mutation</topic><topic>Potassium Channels - biosynthesis</topic><topic>Potassium Channels - chemistry</topic><topic>Potassium Channels - physiology</topic><topic>Protein Conformation</topic><topic>Rats</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Recombinant Proteins - chemistry</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bénitah, J.P.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Yamagishi, T.</creatorcontrib><creatorcontrib>Janecki, M.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bénitah, J.P.</au><au>Ranjan, R.</au><au>Yamagishi, T.</au><au>Janecki, M.</au><au>Tomaselli, G.F.</au><au>Marban, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular motions within the pore of voltage-dependent sodium channels</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1997-08-01</date><risdate>1997</risdate><volume>73</volume><issue>2</issue><spage>603</spage><epage>613</epage><pages>603-613</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The pores of ion channel proteins are often modeled as static structures. In this view, selectivity reflects rigidly constrained backbone orientations. Such a picture is at variance with the generalization that biological proteins are flexible, capable of major internal motions on biologically relevant time scales. We tested for motions in the sodium channel pore by systematically introducing pairs of cysteine residues throughout the pore-lining segments. Two distinct pairs of residues spontaneously formed disulfide bonds bridging domains I and II. Nine other permutations, involving all four domains, were capable of disulfide bonding in the presence of a redox catalyst. The results are inconsistent with a single fixed backbone structure for the pore; instead, the segments that line the permeation pathway appear capable of sizable motions.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9251780</pmid><doi>10.1016/S0006-3495(97)78096-2</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1997-08, Vol.73 (2), p.603-613
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1180960
source MEDLINE; Elsevier ScienceDirect Journals Complete; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Amino Acid Sequence
Animals
Calorimetry
Cysteine
Disulfides
Female
Hydrogen Bonding
Kinetics
Life Sciences
Membrane Potentials
Models, Molecular
Muscle, Skeletal - physiology
Mutagenesis, Site-Directed
Oocytes - physiology
Point Mutation
Potassium Channels - biosynthesis
Potassium Channels - chemistry
Potassium Channels - physiology
Protein Conformation
Rats
Recombinant Proteins - biosynthesis
Recombinant Proteins - chemistry
Xenopus laevis
title Molecular motions within the pore of voltage-dependent sodium channels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A06%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20motions%20within%20the%20pore%20of%20voltage-dependent%20sodium%20channels&rft.jtitle=Biophysical%20journal&rft.au=B%C3%A9nitah,%20J.P.&rft.date=1997-08-01&rft.volume=73&rft.issue=2&rft.spage=603&rft.epage=613&rft.pages=603-613&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(97)78096-2&rft_dat=%3Chal_pubme%3Eoai_HAL_inserm_04409723v1%3C/hal_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/9251780&rft_els_id=S0006349597780962&rfr_iscdi=true