Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease

Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional haz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 2025-02, Vol.44 (3-4), p.e10324
Hauptverfasser: Feng, Jiahui, Shi, Haolun, Ma, Da, Faisal Beg, Mirza, Cao, Jiguo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3-4
container_start_page e10324
container_title Statistics in medicine
container_volume 44
creator Feng, Jiahui
Shi, Haolun
Ma, Da
Faisal Beg, Mirza
Cao, Jiguo
description Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
doi_str_mv 10.1002/sim.10324
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11760660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3159693179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2094-a40ed2cee0c75b3e8083cffd945a8f69523c29d31fc953ff418a9b9ba19b06823</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS1ERZfCgT-ALHEADoGxHccxF7RaaEEqAlF6thxnwrpK4mAnFaV_Hm-3VMBlZuT59PzsR8gTBq8YAH-d_JAHwct7ZMVAqwK4rO-TFXClikoxeUgepnQBwJjk6gE5FLqWQtWwItdny4Tx0ids6fEyutmH0fb0S_Sj81OeNmGYwojjTNd5cZV8oudji5HOW6Sf_M95iUg3u_LVzvkktNi_ySxdT1Pvnd0J0jnQdf9ri37A-PyMvsvX2YSPyEFn-4SPb_sROT9-_23zoTj9fPJxsz4tHAddFrYEbLlDBKdkI7CGWriua3Upbd1VWnLhuG4F65yWoutKVlvd6MYy3UBVc3FE3u51p6UZsHX5MdH2Zop-sPHKBOvNv5vRb833cGkYUxVUFWSFF7cKMfxYMM1m8Mlh39sRw5KMYFJXWjClM_rsP_QiLDF_3Z7SImM7Sy_3lIshpYjdnRsGZpepyZmam0wz-_Rv-3fknxDFbwZ_nh4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159939312</pqid></control><display><type>article</type><title>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feng, Jiahui ; Shi, Haolun ; Ma, Da ; Faisal Beg, Mirza ; Cao, Jiguo</creator><creatorcontrib>Feng, Jiahui ; Shi, Haolun ; Ma, Da ; Faisal Beg, Mirza ; Cao, Jiguo</creatorcontrib><description>Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.10324</identifier><identifier>PMID: 39853780</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Alzheimer Disease - drug therapy ; Alzheimer's disease ; Brain - diagnostic imaging ; Computer Simulation ; Humans ; Magnetic Resonance Imaging ; Models, Statistical ; Neuroimaging - methods ; Principal Component Analysis ; Principal components analysis ; Proportional Hazards Models</subject><ispartof>Statistics in medicine, 2025-02, Vol.44 (3-4), p.e10324</ispartof><rights>2025 The Author(s). Statistics in Medicine published by John Wiley &amp; Sons Ltd.</rights><rights>2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2094-a40ed2cee0c75b3e8083cffd945a8f69523c29d31fc953ff418a9b9ba19b06823</cites><orcidid>0000-0001-7417-6330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39853780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Jiahui</creatorcontrib><creatorcontrib>Shi, Haolun</creatorcontrib><creatorcontrib>Ma, Da</creatorcontrib><creatorcontrib>Faisal Beg, Mirza</creatorcontrib><creatorcontrib>Cao, Jiguo</creatorcontrib><title>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.</description><subject>Alzheimer Disease - drug therapy</subject><subject>Alzheimer's disease</subject><subject>Brain - diagnostic imaging</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Statistical</subject><subject>Neuroimaging - methods</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Proportional Hazards Models</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQhS1ERZfCgT-ALHEADoGxHccxF7RaaEEqAlF6thxnwrpK4mAnFaV_Hm-3VMBlZuT59PzsR8gTBq8YAH-d_JAHwct7ZMVAqwK4rO-TFXClikoxeUgepnQBwJjk6gE5FLqWQtWwItdny4Tx0ids6fEyutmH0fb0S_Sj81OeNmGYwojjTNd5cZV8oudji5HOW6Sf_M95iUg3u_LVzvkktNi_ySxdT1Pvnd0J0jnQdf9ri37A-PyMvsvX2YSPyEFn-4SPb_sROT9-_23zoTj9fPJxsz4tHAddFrYEbLlDBKdkI7CGWriua3Upbd1VWnLhuG4F65yWoutKVlvd6MYy3UBVc3FE3u51p6UZsHX5MdH2Zop-sPHKBOvNv5vRb833cGkYUxVUFWSFF7cKMfxYMM1m8Mlh39sRw5KMYFJXWjClM_rsP_QiLDF_3Z7SImM7Sy_3lIshpYjdnRsGZpepyZmam0wz-_Rv-3fknxDFbwZ_nh4</recordid><startdate>20250210</startdate><enddate>20250210</enddate><creator>Feng, Jiahui</creator><creator>Shi, Haolun</creator><creator>Ma, Da</creator><creator>Faisal Beg, Mirza</creator><creator>Cao, Jiguo</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley &amp; Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7417-6330</orcidid></search><sort><creationdate>20250210</creationdate><title>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</title><author>Feng, Jiahui ; Shi, Haolun ; Ma, Da ; Faisal Beg, Mirza ; Cao, Jiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2094-a40ed2cee0c75b3e8083cffd945a8f69523c29d31fc953ff418a9b9ba19b06823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alzheimer Disease - drug therapy</topic><topic>Alzheimer's disease</topic><topic>Brain - diagnostic imaging</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Statistical</topic><topic>Neuroimaging - methods</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Proportional Hazards Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jiahui</creatorcontrib><creatorcontrib>Shi, Haolun</creatorcontrib><creatorcontrib>Ma, Da</creatorcontrib><creatorcontrib>Faisal Beg, Mirza</creatorcontrib><creatorcontrib>Cao, Jiguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jiahui</au><au>Shi, Haolun</au><au>Ma, Da</au><au>Faisal Beg, Mirza</au><au>Cao, Jiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2025-02-10</date><risdate>2025</risdate><volume>44</volume><issue>3-4</issue><spage>e10324</spage><pages>e10324-</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39853780</pmid><doi>10.1002/sim.10324</doi><orcidid>https://orcid.org/0000-0001-7417-6330</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 2025-02, Vol.44 (3-4), p.e10324
issn 0277-6715
1097-0258
1097-0258
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11760660
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Alzheimer Disease - drug therapy
Alzheimer's disease
Brain - diagnostic imaging
Computer Simulation
Humans
Magnetic Resonance Imaging
Models, Statistical
Neuroimaging - methods
Principal Component Analysis
Principal components analysis
Proportional Hazards Models
title Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Functional%20Principal%20Component%20Analysis%20Under%20the%20Mixture%20Cure%20Rate%20Model:%20An%20Application%20to%20Alzheimer'S%20Disease&rft.jtitle=Statistics%20in%20medicine&rft.au=Feng,%20Jiahui&rft.date=2025-02-10&rft.volume=44&rft.issue=3-4&rft.spage=e10324&rft.pages=e10324-&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.10324&rft_dat=%3Cproquest_pubme%3E3159693179%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159939312&rft_id=info:pmid/39853780&rfr_iscdi=true