Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease
Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional haz...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 2025-02, Vol.44 (3-4), p.e10324 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3-4 |
container_start_page | e10324 |
container_title | Statistics in medicine |
container_volume | 44 |
creator | Feng, Jiahui Shi, Haolun Ma, Da Faisal Beg, Mirza Cao, Jiguo |
description | Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. |
doi_str_mv | 10.1002/sim.10324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11760660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3159693179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2094-a40ed2cee0c75b3e8083cffd945a8f69523c29d31fc953ff418a9b9ba19b06823</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS1ERZfCgT-ALHEADoGxHccxF7RaaEEqAlF6thxnwrpK4mAnFaV_Hm-3VMBlZuT59PzsR8gTBq8YAH-d_JAHwct7ZMVAqwK4rO-TFXClikoxeUgepnQBwJjk6gE5FLqWQtWwItdny4Tx0ids6fEyutmH0fb0S_Sj81OeNmGYwojjTNd5cZV8oudji5HOW6Sf_M95iUg3u_LVzvkktNi_ySxdT1Pvnd0J0jnQdf9ri37A-PyMvsvX2YSPyEFn-4SPb_sROT9-_23zoTj9fPJxsz4tHAddFrYEbLlDBKdkI7CGWriua3Upbd1VWnLhuG4F65yWoutKVlvd6MYy3UBVc3FE3u51p6UZsHX5MdH2Zop-sPHKBOvNv5vRb833cGkYUxVUFWSFF7cKMfxYMM1m8Mlh39sRw5KMYFJXWjClM_rsP_QiLDF_3Z7SImM7Sy_3lIshpYjdnRsGZpepyZmam0wz-_Rv-3fknxDFbwZ_nh4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159939312</pqid></control><display><type>article</type><title>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Feng, Jiahui ; Shi, Haolun ; Ma, Da ; Faisal Beg, Mirza ; Cao, Jiguo</creator><creatorcontrib>Feng, Jiahui ; Shi, Haolun ; Ma, Da ; Faisal Beg, Mirza ; Cao, Jiguo</creatorcontrib><description>Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.10324</identifier><identifier>PMID: 39853780</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Alzheimer Disease - drug therapy ; Alzheimer's disease ; Brain - diagnostic imaging ; Computer Simulation ; Humans ; Magnetic Resonance Imaging ; Models, Statistical ; Neuroimaging - methods ; Principal Component Analysis ; Principal components analysis ; Proportional Hazards Models</subject><ispartof>Statistics in medicine, 2025-02, Vol.44 (3-4), p.e10324</ispartof><rights>2025 The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd.</rights><rights>2025. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 The Author(s). published by John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2094-a40ed2cee0c75b3e8083cffd945a8f69523c29d31fc953ff418a9b9ba19b06823</cites><orcidid>0000-0001-7417-6330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39853780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Jiahui</creatorcontrib><creatorcontrib>Shi, Haolun</creatorcontrib><creatorcontrib>Ma, Da</creatorcontrib><creatorcontrib>Faisal Beg, Mirza</creatorcontrib><creatorcontrib>Cao, Jiguo</creatorcontrib><title>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.</description><subject>Alzheimer Disease - drug therapy</subject><subject>Alzheimer's disease</subject><subject>Brain - diagnostic imaging</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging</subject><subject>Models, Statistical</subject><subject>Neuroimaging - methods</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Proportional Hazards Models</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUFv1DAQhS1ERZfCgT-ALHEADoGxHccxF7RaaEEqAlF6thxnwrpK4mAnFaV_Hm-3VMBlZuT59PzsR8gTBq8YAH-d_JAHwct7ZMVAqwK4rO-TFXClikoxeUgepnQBwJjk6gE5FLqWQtWwItdny4Tx0ids6fEyutmH0fb0S_Sj81OeNmGYwojjTNd5cZV8oudji5HOW6Sf_M95iUg3u_LVzvkktNi_ySxdT1Pvnd0J0jnQdf9ri37A-PyMvsvX2YSPyEFn-4SPb_sROT9-_23zoTj9fPJxsz4tHAddFrYEbLlDBKdkI7CGWriua3Upbd1VWnLhuG4F65yWoutKVlvd6MYy3UBVc3FE3u51p6UZsHX5MdH2Zop-sPHKBOvNv5vRb833cGkYUxVUFWSFF7cKMfxYMM1m8Mlh39sRw5KMYFJXWjClM_rsP_QiLDF_3Z7SImM7Sy_3lIshpYjdnRsGZpepyZmam0wz-_Rv-3fknxDFbwZ_nh4</recordid><startdate>20250210</startdate><enddate>20250210</enddate><creator>Feng, Jiahui</creator><creator>Shi, Haolun</creator><creator>Ma, Da</creator><creator>Faisal Beg, Mirza</creator><creator>Cao, Jiguo</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley & Sons, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7417-6330</orcidid></search><sort><creationdate>20250210</creationdate><title>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</title><author>Feng, Jiahui ; Shi, Haolun ; Ma, Da ; Faisal Beg, Mirza ; Cao, Jiguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2094-a40ed2cee0c75b3e8083cffd945a8f69523c29d31fc953ff418a9b9ba19b06823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alzheimer Disease - drug therapy</topic><topic>Alzheimer's disease</topic><topic>Brain - diagnostic imaging</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging</topic><topic>Models, Statistical</topic><topic>Neuroimaging - methods</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Proportional Hazards Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Jiahui</creatorcontrib><creatorcontrib>Shi, Haolun</creatorcontrib><creatorcontrib>Ma, Da</creatorcontrib><creatorcontrib>Faisal Beg, Mirza</creatorcontrib><creatorcontrib>Cao, Jiguo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Jiahui</au><au>Shi, Haolun</au><au>Ma, Da</au><au>Faisal Beg, Mirza</au><au>Cao, Jiguo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2025-02-10</date><risdate>2025</risdate><volume>44</volume><issue>3-4</issue><spage>e10324</spage><pages>e10324-</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39853780</pmid><doi>10.1002/sim.10324</doi><orcidid>https://orcid.org/0000-0001-7417-6330</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2025-02, Vol.44 (3-4), p.e10324 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11760660 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Alzheimer Disease - drug therapy Alzheimer's disease Brain - diagnostic imaging Computer Simulation Humans Magnetic Resonance Imaging Models, Statistical Neuroimaging - methods Principal Component Analysis Principal components analysis Proportional Hazards Models |
title | Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Functional%20Principal%20Component%20Analysis%20Under%20the%20Mixture%20Cure%20Rate%20Model:%20An%20Application%20to%20Alzheimer'S%20Disease&rft.jtitle=Statistics%20in%20medicine&rft.au=Feng,%20Jiahui&rft.date=2025-02-10&rft.volume=44&rft.issue=3-4&rft.spage=e10324&rft.pages=e10324-&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.10324&rft_dat=%3Cproquest_pubme%3E3159693179%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159939312&rft_id=info:pmid/39853780&rfr_iscdi=true |