Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase

Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2005-01, Vol.33 (12), p.3919-3931
Hauptverfasser: Kuznetsov, Nikita A., Koval, Vladimir V., Zharkov, Dmitry O., Nevinsky, Georgy A., Douglas, Kenneth T., Fedorova, Olga S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3931
container_issue 12
container_start_page 3919
container_title Nucleic acids research
container_volume 33
creator Kuznetsov, Nikita A.
Koval, Vladimir V.
Zharkov, Dmitry O.
Nevinsky, Georgy A.
Douglas, Kenneth T.
Fedorova, Olga S.
description Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG.
doi_str_mv 10.1093/nar/gki694
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1176011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>879902861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c536t-b10e39416eabeedfbd06a23fcbdda6b32ebf45b4150bb5e746f63409aea603513</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0Eokvhwg9AEQcOlULH8UeSC1K1FBZR4LIIxMWynUnqNmu3dlJ1_z1e7ap8nOYwz7x6Ri8hLym8pdCyU6_j6XDtZMsfkQVlsip5K6vHZAEMREmBN0fkWUpXAJRTwZ-SIyqh4jWvFmT92XmcnE1F6Is0mzRFPWER0YbBu8kFX2jfFXZEfacHLMy2uJw32hdNGe7DMGuf78v3X8-KYdzakLajTvicPOn1mPDFYR6T7x_O18tVefHt46fl2UVpBZNTaSggazmVqA1i15sOpK5Yb03XaWlYhabnwmRnMEZgzWUvGYdWo5bABGXH5N0-92Y2G-ws-mw_qpvoNjpuVdBO_bvx7lIN4U5RWkugu4A3h4AYbmdMk9q4ZHEctccwJyUb4LJmO_D1f-BVmKPPz6kKQDZCNJChkz1kY0gpYv9gQkHtmlK5KbVvKsOv_nb_gx6qyUC5B1ya8P5hr-O1ykq1UKufvxT7sf6y5Ku14uw3Hxag9A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200685580</pqid></control><display><type>article</type><title>Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Kuznetsov, Nikita A. ; Koval, Vladimir V. ; Zharkov, Dmitry O. ; Nevinsky, Georgy A. ; Douglas, Kenneth T. ; Fedorova, Olga S.</creator><creatorcontrib>Kuznetsov, Nikita A. ; Koval, Vladimir V. ; Zharkov, Dmitry O. ; Nevinsky, Georgy A. ; Douglas, Kenneth T. ; Fedorova, Olga S.</creatorcontrib><description>Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gki694</identifier><identifier>PMID: 16024742</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>DNA - chemistry ; DNA - metabolism ; DNA Glycosylases - chemistry ; DNA Glycosylases - metabolism ; DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism ; DNA-Formamidopyrimidine Glycosylase - metabolism ; Escherichia coli Proteins - metabolism ; Fluorescence ; Guanine - analogs &amp; derivatives ; Guanine - metabolism ; Guanine - pharmacology ; Kinetics ; Substrate Specificity</subject><ispartof>Nucleic acids research, 2005-01, Vol.33 (12), p.3919-3931</ispartof><rights>Copyright Oxford University Press(England) 2005</rights><rights>The Author 2005. Published by Oxford University Press. All rights reserved 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c536t-b10e39416eabeedfbd06a23fcbdda6b32ebf45b4150bb5e746f63409aea603513</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176011/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1176011/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16024742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuznetsov, Nikita A.</creatorcontrib><creatorcontrib>Koval, Vladimir V.</creatorcontrib><creatorcontrib>Zharkov, Dmitry O.</creatorcontrib><creatorcontrib>Nevinsky, Georgy A.</creatorcontrib><creatorcontrib>Douglas, Kenneth T.</creatorcontrib><creatorcontrib>Fedorova, Olga S.</creatorcontrib><title>Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG.</description><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Glycosylases - chemistry</subject><subject>DNA Glycosylases - metabolism</subject><subject>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</subject><subject>DNA-Formamidopyrimidine Glycosylase - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Guanine - analogs &amp; derivatives</subject><subject>Guanine - metabolism</subject><subject>Guanine - pharmacology</subject><subject>Kinetics</subject><subject>Substrate Specificity</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1v1DAQhi0Eokvhwg9AEQcOlULH8UeSC1K1FBZR4LIIxMWynUnqNmu3dlJ1_z1e7ap8nOYwz7x6Ri8hLym8pdCyU6_j6XDtZMsfkQVlsip5K6vHZAEMREmBN0fkWUpXAJRTwZ-SIyqh4jWvFmT92XmcnE1F6Is0mzRFPWER0YbBu8kFX2jfFXZEfacHLMy2uJw32hdNGe7DMGuf78v3X8-KYdzakLajTvicPOn1mPDFYR6T7x_O18tVefHt46fl2UVpBZNTaSggazmVqA1i15sOpK5Yb03XaWlYhabnwmRnMEZgzWUvGYdWo5bABGXH5N0-92Y2G-ws-mw_qpvoNjpuVdBO_bvx7lIN4U5RWkugu4A3h4AYbmdMk9q4ZHEctccwJyUb4LJmO_D1f-BVmKPPz6kKQDZCNJChkz1kY0gpYv9gQkHtmlK5KbVvKsOv_nb_gx6qyUC5B1ya8P5hr-O1ykq1UKufvxT7sf6y5Ku14uw3Hxag9A</recordid><startdate>20050101</startdate><enddate>20050101</enddate><creator>Kuznetsov, Nikita A.</creator><creator>Koval, Vladimir V.</creator><creator>Zharkov, Dmitry O.</creator><creator>Nevinsky, Georgy A.</creator><creator>Douglas, Kenneth T.</creator><creator>Fedorova, Olga S.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050101</creationdate><title>Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase</title><author>Kuznetsov, Nikita A. ; Koval, Vladimir V. ; Zharkov, Dmitry O. ; Nevinsky, Georgy A. ; Douglas, Kenneth T. ; Fedorova, Olga S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c536t-b10e39416eabeedfbd06a23fcbdda6b32ebf45b4150bb5e746f63409aea603513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Glycosylases - chemistry</topic><topic>DNA Glycosylases - metabolism</topic><topic>DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism</topic><topic>DNA-Formamidopyrimidine Glycosylase - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Guanine - analogs &amp; derivatives</topic><topic>Guanine - metabolism</topic><topic>Guanine - pharmacology</topic><topic>Kinetics</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsov, Nikita A.</creatorcontrib><creatorcontrib>Koval, Vladimir V.</creatorcontrib><creatorcontrib>Zharkov, Dmitry O.</creatorcontrib><creatorcontrib>Nevinsky, Georgy A.</creatorcontrib><creatorcontrib>Douglas, Kenneth T.</creatorcontrib><creatorcontrib>Fedorova, Olga S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsov, Nikita A.</au><au>Koval, Vladimir V.</au><au>Zharkov, Dmitry O.</au><au>Nevinsky, Georgy A.</au><au>Douglas, Kenneth T.</au><au>Fedorova, Olga S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2005-01-01</date><risdate>2005</risdate><volume>33</volume><issue>12</issue><spage>3919</spage><epage>3931</epage><pages>3919-3931</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Human 8-oxoguanine-DNA glycosylase (hOgg1) excises 8-oxo-7,8-dihydroguanine (8-oxoG) from damaged DNA. We report a pre-steady-state kinetic analysis of hOgg1 mechanism using stopped-flow and enzyme fluorescence monitoring. The kinetic scheme for hOgg1 processing an 8-oxoG:C-containing substrate was found to include at least three fast equilibrium steps followed by two slow, irreversible steps and another equilibrium step. The second irreversible step was rate-limiting overall. By comparing data from Ogg1 intrinsic fluorescence traces and from accumulation of products of different types, the irreversible steps were attributed to two main chemical steps of the Ogg1-catalyzed reaction: cleavage of the N-glycosidic bond of the damaged nucleotide and β-elimination of its 3′-phosphate. The fast equilibrium steps were attributed to enzyme conformational changes during the recognition of 8-oxoG, and the final equilibrium, to binding of the reaction product by the enzyme. hOgg1 interacted with a substrate containing an aldehydic AP site very slowly, but the addition of 8-bromoguanine (8-BrG) greatly accelerated the reaction, which was best described by two initial equilibrium steps followed by one irreversible chemical step and a final product release equilibrium step. The irreversible step may correspond to β-elimination since it is the very step facilitated by 8-BrG.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>16024742</pmid><doi>10.1093/nar/gki694</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2005-01, Vol.33 (12), p.3919-3931
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1176011
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects DNA - chemistry
DNA - metabolism
DNA Glycosylases - chemistry
DNA Glycosylases - metabolism
DNA-(Apurinic or Apyrimidinic Site) Lyase - metabolism
DNA-Formamidopyrimidine Glycosylase - metabolism
Escherichia coli Proteins - metabolism
Fluorescence
Guanine - analogs & derivatives
Guanine - metabolism
Guanine - pharmacology
Kinetics
Substrate Specificity
title Kinetics of substrate recognition and cleavage by human 8-oxoguanine-DNA glycosylase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20substrate%20recognition%20and%20cleavage%20by%20human%208-oxoguanine-DNA%20glycosylase&rft.jtitle=Nucleic%20acids%20research&rft.au=Kuznetsov,%20Nikita%20A.&rft.date=2005-01-01&rft.volume=33&rft.issue=12&rft.spage=3919&rft.epage=3931&rft.pages=3919-3931&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gki694&rft_dat=%3Cproquest_pubme%3E879902861%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200685580&rft_id=info:pmid/16024742&rfr_iscdi=true