Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers

Nanofibrous active layers offer hierarchical control over molecular structure, and the size and distribution of electron donor:acceptor domains, beyond conventional organic photovoltaic architectures. This structure is created by forming donor pathways via electrospinning nanofibers of semiconductin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2025-01, Vol.21 (3), p.e2409269-n/a
Hauptverfasser: Schofield, Ryan M., Maciejewska, Barbara M., Elmestekawy, Karim A., Woolley, Jack M., Tebbutt, George. T., Danaie, Mohsen, Allen, Christopher S., Herz, Laura M., Assender, Hazel E., Grobert, Nicole
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e2409269
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 21
creator Schofield, Ryan M.
Maciejewska, Barbara M.
Elmestekawy, Karim A.
Woolley, Jack M.
Tebbutt, George. T.
Danaie, Mohsen
Allen, Christopher S.
Herz, Laura M.
Assender, Hazel E.
Grobert, Nicole
description Nanofibrous active layers offer hierarchical control over molecular structure, and the size and distribution of electron donor:acceptor domains, beyond conventional organic photovoltaic architectures. This structure is created by forming donor pathways via electrospinning nanofibers of semiconducting polymer, then infiltrating with an electron acceptor. Electrospinning induces chain and crystallite alignment, resulting in enhanced light‐harvesting and charge transport. Here, the charge transport capabilities are predicted, and charge separation and dynamics are evaluated in these active layers, to assess their photovoltaic potential. Through X‐ray and electron diffraction, the fiber nanostructure is elucidated, with uniaxial elongation of the electrospinning jet aligning the polymer backbones within crystallites orthogonal to the fiber axis, and amorphous chains parallel. It is revealed that this structure forms when anisotropic crystallites, pre‐assembled in solution, become oriented along the fiber– a configuration with high charge transport potential. Competitive dissociation of excitons formed in the photoactive nanofibers is recorded, with 95%+ photoluminescence quenching upon electron acceptor introduction. Transient absorption studies reveal that silver nanoparticle addition to the fibers improves charge generation and/or lifetimes. 1 ns post‐excitation, the plasmonic architecture contains 45% more polarons, per exciton formed, than the bulk heterojunction. Therefore, enhanced exciton populations may be successfully translated into additional charge carriers. Nanofibrous active layers, created by electrospinning webs of ultrafine poly(3‐hexylthiophene) (P3HT) nanofibers infiltrated by [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), offer hierarchical control over molecular structure and component domains. Its photovoltaic potential is assessed by determination of the crystallite nanostructure and evaluation of competitive exciton dissociation with 95%+ quenching efficiency. Further addition of plasmonic nanoparticles may improve charge carrier generation and/or lifetimes.
doi_str_mv 10.1002/smll.202409269
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3157963327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3149-8b597a544d1bc046a08c31ec791e8b6449bc12b8956881f7c806f9d601aaf5ea3</originalsourceid><addsrcrecordid>eNqFkc1PGzEQxa2qqHz12mO1Ui-9JHhsr9c-VQhRirSQSMDZ8jpeMPKuwd5Nlf--jpKGjwunGc385mmeHkLfAE8BY3KSOu-nBBOGJeHyEzoADnTCBZGfdz3gfXSY0iPGFAirvqB9KstKECoP0Oxa9yENcTTDGG2h-0UxfwhDWAY_aGeKeRhsPzjti9AWc69TF_o8Xl-1rolhTMWpGdzSFrVe2ZiO0V6rfbJft_UI3f0-vz37M6lnF5dnp_XEUGByIppSVrpkbAGNwYxrLPLCmkqCFQ1nTDYGSCNkyYWAtjIC81YuOAat29JqeoR-bXSfxqazC5OfjNqrp-g6HVcqaKfebnr3oO7DUgFUJWWSZoWfW4UYnkebBtW5ZKz3urfZlqJACTBMMWT0xzv0MYyxz_4yVVaSU0qqTE03lIkhpWjb3TeA1TostQ5L7cLKB99fe9jh_9PJgNwAf523qw_k1M1VXb-I_wPRwqIw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3157963327</pqid></control><display><type>article</type><title>Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers</title><source>Wiley-Blackwell Journals</source><creator>Schofield, Ryan M. ; Maciejewska, Barbara M. ; Elmestekawy, Karim A. ; Woolley, Jack M. ; Tebbutt, George. T. ; Danaie, Mohsen ; Allen, Christopher S. ; Herz, Laura M. ; Assender, Hazel E. ; Grobert, Nicole</creator><creatorcontrib>Schofield, Ryan M. ; Maciejewska, Barbara M. ; Elmestekawy, Karim A. ; Woolley, Jack M. ; Tebbutt, George. T. ; Danaie, Mohsen ; Allen, Christopher S. ; Herz, Laura M. ; Assender, Hazel E. ; Grobert, Nicole</creatorcontrib><description>Nanofibrous active layers offer hierarchical control over molecular structure, and the size and distribution of electron donor:acceptor domains, beyond conventional organic photovoltaic architectures. This structure is created by forming donor pathways via electrospinning nanofibers of semiconducting polymer, then infiltrating with an electron acceptor. Electrospinning induces chain and crystallite alignment, resulting in enhanced light‐harvesting and charge transport. Here, the charge transport capabilities are predicted, and charge separation and dynamics are evaluated in these active layers, to assess their photovoltaic potential. Through X‐ray and electron diffraction, the fiber nanostructure is elucidated, with uniaxial elongation of the electrospinning jet aligning the polymer backbones within crystallites orthogonal to the fiber axis, and amorphous chains parallel. It is revealed that this structure forms when anisotropic crystallites, pre‐assembled in solution, become oriented along the fiber– a configuration with high charge transport potential. Competitive dissociation of excitons formed in the photoactive nanofibers is recorded, with 95%+ photoluminescence quenching upon electron acceptor introduction. Transient absorption studies reveal that silver nanoparticle addition to the fibers improves charge generation and/or lifetimes. 1 ns post‐excitation, the plasmonic architecture contains 45% more polarons, per exciton formed, than the bulk heterojunction. Therefore, enhanced exciton populations may be successfully translated into additional charge carriers. Nanofibrous active layers, created by electrospinning webs of ultrafine poly(3‐hexylthiophene) (P3HT) nanofibers infiltrated by [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), offer hierarchical control over molecular structure and component domains. Its photovoltaic potential is assessed by determination of the crystallite nanostructure and evaluation of competitive exciton dissociation with 95%+ quenching efficiency. Further addition of plasmonic nanoparticles may improve charge carrier generation and/or lifetimes.</description><identifier>ISSN: 1613-6810</identifier><identifier>ISSN: 1613-6829</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.202409269</identifier><identifier>PMID: 39578239</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Chains (polymeric) ; charge dynamics ; Charge transport ; crystallite alignment ; Crystallites ; Current carriers ; Electron diffraction ; electrospinning ; Elongated structure ; exciton dissociation ; Excitons ; Heterojunctions ; Molecular structure ; Nanofibers ; Nanostructure ; Photoluminescence ; photovoltaics ; Plasmonics ; Polymers ; Silver</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (3), p.e2409269-n/a</ispartof><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH</rights><rights>2024 The Author(s). Small published by Wiley‐VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3149-8b597a544d1bc046a08c31ec791e8b6449bc12b8956881f7c806f9d601aaf5ea3</cites><orcidid>0000-0001-5831-000X ; 0000-0001-9621-334X ; 0000-0002-0825-0026 ; 0000-0002-7707-1611 ; 0000-0002-9325-7571 ; 0000-0002-6353-6000 ; 0000-0002-8499-8749 ; 0000-0002-3893-3880 ; 0000-0002-3101-366X ; 0000-0001-8320-695X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.202409269$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.202409269$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39578239$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schofield, Ryan M.</creatorcontrib><creatorcontrib>Maciejewska, Barbara M.</creatorcontrib><creatorcontrib>Elmestekawy, Karim A.</creatorcontrib><creatorcontrib>Woolley, Jack M.</creatorcontrib><creatorcontrib>Tebbutt, George. T.</creatorcontrib><creatorcontrib>Danaie, Mohsen</creatorcontrib><creatorcontrib>Allen, Christopher S.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><creatorcontrib>Assender, Hazel E.</creatorcontrib><creatorcontrib>Grobert, Nicole</creatorcontrib><title>Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Nanofibrous active layers offer hierarchical control over molecular structure, and the size and distribution of electron donor:acceptor domains, beyond conventional organic photovoltaic architectures. This structure is created by forming donor pathways via electrospinning nanofibers of semiconducting polymer, then infiltrating with an electron acceptor. Electrospinning induces chain and crystallite alignment, resulting in enhanced light‐harvesting and charge transport. Here, the charge transport capabilities are predicted, and charge separation and dynamics are evaluated in these active layers, to assess their photovoltaic potential. Through X‐ray and electron diffraction, the fiber nanostructure is elucidated, with uniaxial elongation of the electrospinning jet aligning the polymer backbones within crystallites orthogonal to the fiber axis, and amorphous chains parallel. It is revealed that this structure forms when anisotropic crystallites, pre‐assembled in solution, become oriented along the fiber– a configuration with high charge transport potential. Competitive dissociation of excitons formed in the photoactive nanofibers is recorded, with 95%+ photoluminescence quenching upon electron acceptor introduction. Transient absorption studies reveal that silver nanoparticle addition to the fibers improves charge generation and/or lifetimes. 1 ns post‐excitation, the plasmonic architecture contains 45% more polarons, per exciton formed, than the bulk heterojunction. Therefore, enhanced exciton populations may be successfully translated into additional charge carriers. Nanofibrous active layers, created by electrospinning webs of ultrafine poly(3‐hexylthiophene) (P3HT) nanofibers infiltrated by [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), offer hierarchical control over molecular structure and component domains. Its photovoltaic potential is assessed by determination of the crystallite nanostructure and evaluation of competitive exciton dissociation with 95%+ quenching efficiency. Further addition of plasmonic nanoparticles may improve charge carrier generation and/or lifetimes.</description><subject>Chains (polymeric)</subject><subject>charge dynamics</subject><subject>Charge transport</subject><subject>crystallite alignment</subject><subject>Crystallites</subject><subject>Current carriers</subject><subject>Electron diffraction</subject><subject>electrospinning</subject><subject>Elongated structure</subject><subject>exciton dissociation</subject><subject>Excitons</subject><subject>Heterojunctions</subject><subject>Molecular structure</subject><subject>Nanofibers</subject><subject>Nanostructure</subject><subject>Photoluminescence</subject><subject>photovoltaics</subject><subject>Plasmonics</subject><subject>Polymers</subject><subject>Silver</subject><issn>1613-6810</issn><issn>1613-6829</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1PGzEQxa2qqHz12mO1Ui-9JHhsr9c-VQhRirSQSMDZ8jpeMPKuwd5Nlf--jpKGjwunGc385mmeHkLfAE8BY3KSOu-nBBOGJeHyEzoADnTCBZGfdz3gfXSY0iPGFAirvqB9KstKECoP0Oxa9yENcTTDGG2h-0UxfwhDWAY_aGeKeRhsPzjti9AWc69TF_o8Xl-1rolhTMWpGdzSFrVe2ZiO0V6rfbJft_UI3f0-vz37M6lnF5dnp_XEUGByIppSVrpkbAGNwYxrLPLCmkqCFQ1nTDYGSCNkyYWAtjIC81YuOAat29JqeoR-bXSfxqazC5OfjNqrp-g6HVcqaKfebnr3oO7DUgFUJWWSZoWfW4UYnkebBtW5ZKz3urfZlqJACTBMMWT0xzv0MYyxz_4yVVaSU0qqTE03lIkhpWjb3TeA1TostQ5L7cLKB99fe9jh_9PJgNwAf523qw_k1M1VXb-I_wPRwqIw</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Schofield, Ryan M.</creator><creator>Maciejewska, Barbara M.</creator><creator>Elmestekawy, Karim A.</creator><creator>Woolley, Jack M.</creator><creator>Tebbutt, George. T.</creator><creator>Danaie, Mohsen</creator><creator>Allen, Christopher S.</creator><creator>Herz, Laura M.</creator><creator>Assender, Hazel E.</creator><creator>Grobert, Nicole</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5831-000X</orcidid><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid><orcidid>https://orcid.org/0000-0002-0825-0026</orcidid><orcidid>https://orcid.org/0000-0002-7707-1611</orcidid><orcidid>https://orcid.org/0000-0002-9325-7571</orcidid><orcidid>https://orcid.org/0000-0002-6353-6000</orcidid><orcidid>https://orcid.org/0000-0002-8499-8749</orcidid><orcidid>https://orcid.org/0000-0002-3893-3880</orcidid><orcidid>https://orcid.org/0000-0002-3101-366X</orcidid><orcidid>https://orcid.org/0000-0001-8320-695X</orcidid></search><sort><creationdate>20250101</creationdate><title>Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers</title><author>Schofield, Ryan M. ; Maciejewska, Barbara M. ; Elmestekawy, Karim A. ; Woolley, Jack M. ; Tebbutt, George. T. ; Danaie, Mohsen ; Allen, Christopher S. ; Herz, Laura M. ; Assender, Hazel E. ; Grobert, Nicole</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3149-8b597a544d1bc046a08c31ec791e8b6449bc12b8956881f7c806f9d601aaf5ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Chains (polymeric)</topic><topic>charge dynamics</topic><topic>Charge transport</topic><topic>crystallite alignment</topic><topic>Crystallites</topic><topic>Current carriers</topic><topic>Electron diffraction</topic><topic>electrospinning</topic><topic>Elongated structure</topic><topic>exciton dissociation</topic><topic>Excitons</topic><topic>Heterojunctions</topic><topic>Molecular structure</topic><topic>Nanofibers</topic><topic>Nanostructure</topic><topic>Photoluminescence</topic><topic>photovoltaics</topic><topic>Plasmonics</topic><topic>Polymers</topic><topic>Silver</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schofield, Ryan M.</creatorcontrib><creatorcontrib>Maciejewska, Barbara M.</creatorcontrib><creatorcontrib>Elmestekawy, Karim A.</creatorcontrib><creatorcontrib>Woolley, Jack M.</creatorcontrib><creatorcontrib>Tebbutt, George. T.</creatorcontrib><creatorcontrib>Danaie, Mohsen</creatorcontrib><creatorcontrib>Allen, Christopher S.</creatorcontrib><creatorcontrib>Herz, Laura M.</creatorcontrib><creatorcontrib>Assender, Hazel E.</creatorcontrib><creatorcontrib>Grobert, Nicole</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schofield, Ryan M.</au><au>Maciejewska, Barbara M.</au><au>Elmestekawy, Karim A.</au><au>Woolley, Jack M.</au><au>Tebbutt, George. T.</au><au>Danaie, Mohsen</au><au>Allen, Christopher S.</au><au>Herz, Laura M.</au><au>Assender, Hazel E.</au><au>Grobert, Nicole</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2025-01-01</date><risdate>2025</risdate><volume>21</volume><issue>3</issue><spage>e2409269</spage><epage>n/a</epage><pages>e2409269-n/a</pages><issn>1613-6810</issn><issn>1613-6829</issn><eissn>1613-6829</eissn><abstract>Nanofibrous active layers offer hierarchical control over molecular structure, and the size and distribution of electron donor:acceptor domains, beyond conventional organic photovoltaic architectures. This structure is created by forming donor pathways via electrospinning nanofibers of semiconducting polymer, then infiltrating with an electron acceptor. Electrospinning induces chain and crystallite alignment, resulting in enhanced light‐harvesting and charge transport. Here, the charge transport capabilities are predicted, and charge separation and dynamics are evaluated in these active layers, to assess their photovoltaic potential. Through X‐ray and electron diffraction, the fiber nanostructure is elucidated, with uniaxial elongation of the electrospinning jet aligning the polymer backbones within crystallites orthogonal to the fiber axis, and amorphous chains parallel. It is revealed that this structure forms when anisotropic crystallites, pre‐assembled in solution, become oriented along the fiber– a configuration with high charge transport potential. Competitive dissociation of excitons formed in the photoactive nanofibers is recorded, with 95%+ photoluminescence quenching upon electron acceptor introduction. Transient absorption studies reveal that silver nanoparticle addition to the fibers improves charge generation and/or lifetimes. 1 ns post‐excitation, the plasmonic architecture contains 45% more polarons, per exciton formed, than the bulk heterojunction. Therefore, enhanced exciton populations may be successfully translated into additional charge carriers. Nanofibrous active layers, created by electrospinning webs of ultrafine poly(3‐hexylthiophene) (P3HT) nanofibers infiltrated by [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM), offer hierarchical control over molecular structure and component domains. Its photovoltaic potential is assessed by determination of the crystallite nanostructure and evaluation of competitive exciton dissociation with 95%+ quenching efficiency. Further addition of plasmonic nanoparticles may improve charge carrier generation and/or lifetimes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>39578239</pmid><doi>10.1002/smll.202409269</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5831-000X</orcidid><orcidid>https://orcid.org/0000-0001-9621-334X</orcidid><orcidid>https://orcid.org/0000-0002-0825-0026</orcidid><orcidid>https://orcid.org/0000-0002-7707-1611</orcidid><orcidid>https://orcid.org/0000-0002-9325-7571</orcidid><orcidid>https://orcid.org/0000-0002-6353-6000</orcidid><orcidid>https://orcid.org/0000-0002-8499-8749</orcidid><orcidid>https://orcid.org/0000-0002-3893-3880</orcidid><orcidid>https://orcid.org/0000-0002-3101-366X</orcidid><orcidid>https://orcid.org/0000-0001-8320-695X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2025-01, Vol.21 (3), p.e2409269-n/a
issn 1613-6810
1613-6829
1613-6829
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753493
source Wiley-Blackwell Journals
subjects Chains (polymeric)
charge dynamics
Charge transport
crystallite alignment
Crystallites
Current carriers
Electron diffraction
electrospinning
Elongated structure
exciton dissociation
Excitons
Heterojunctions
Molecular structure
Nanofibers
Nanostructure
Photoluminescence
photovoltaics
Plasmonics
Polymers
Silver
title Nanostructure and Photovoltaic Potential of Plasmonic Nanofibrous Active Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T18%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructure%20and%20Photovoltaic%20Potential%20of%20Plasmonic%20Nanofibrous%20Active%20Layers&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Schofield,%20Ryan%20M.&rft.date=2025-01-01&rft.volume=21&rft.issue=3&rft.spage=e2409269&rft.epage=n/a&rft.pages=e2409269-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.202409269&rft_dat=%3Cproquest_pubme%3E3157963327%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3157963327&rft_id=info:pmid/39578239&rfr_iscdi=true