Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture

Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science advances 2025-01, Vol.11 (4), p.eads0583
Hauptverfasser: Guan, Jian, Du, Jingcheng, Sun, Qian, He, Wen, Ma, Ji, Hassan, Shabi Ui, Wu, Ji, Zhang, Hongjun, Zhang, Sui, Liu, Jiangtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page eads0583
container_title Science advances
container_volume 11
creator Guan, Jian
Du, Jingcheng
Sun, Qian
He, Wen
Ma, Ji
Hassan, Shabi Ui
Wu, Ji
Zhang, Hongjun
Zhang, Sui
Liu, Jiangtao
description Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.
doi_str_mv 10.1126/sciadv.ads0583
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158754863</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-ea7af14139b9f20edfed7b83e33d8c109f9ac2d928c1bb56ef3771098a3c4aaf3</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouKx79dyjl65N0zbtSWTxC1b2ohcvYZpOaqRpYtIW9r834B70NG_ePH7whpBrmm0pzavbIDV0yxa6kJU1OyOrnPEyzcuiPv-jL8kmhK8sy2hRVSVtVuTjFScYUut7GLVMJPQYEm2ct4se-8Ro6a2z3gY9HRM9Js4OR4M-Rg2a1sOIibI-CbOLZhS7Qx4hbpo9XpELBUPAzWmuyfvjw9vuOd0fnl529_vUUV5MKQIHRQvKmrZReYadwo63NUPGulrSrFENyLxr8ri0bVmhYpxHuwYmCwDF1uTul-vm1mAncZw8DMJ5bcAfhQUt_l9G_Sl6uwhKeclYTSPh5kTw9nvGMAmjg8RhiPXsHASjZc3j-yrGfgAHVXHz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158754863</pqid></control><display><type>article</type><title>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Guan, Jian ; Du, Jingcheng ; Sun, Qian ; He, Wen ; Ma, Ji ; Hassan, Shabi Ui ; Wu, Ji ; Zhang, Hongjun ; Zhang, Sui ; Liu, Jiangtao</creator><creatorcontrib>Guan, Jian ; Du, Jingcheng ; Sun, Qian ; He, Wen ; Ma, Ji ; Hassan, Shabi Ui ; Wu, Ji ; Zhang, Hongjun ; Zhang, Sui ; Liu, Jiangtao</creatorcontrib><description>Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.ads0583</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Materials Science ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2025-01, Vol.11 (4), p.eads0583</ispartof><rights>Copyright © 2025 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2025 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753381/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753381/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Du, Jingcheng</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>He, Wen</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Hassan, Shabi Ui</creatorcontrib><creatorcontrib>Wu, Ji</creatorcontrib><creatorcontrib>Zhang, Hongjun</creatorcontrib><creatorcontrib>Zhang, Sui</creatorcontrib><creatorcontrib>Liu, Jiangtao</creatorcontrib><title>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</title><title>Science advances</title><description>Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.</description><subject>Materials Science</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LxDAQxYMouKx79dyjl65N0zbtSWTxC1b2ohcvYZpOaqRpYtIW9r834B70NG_ePH7whpBrmm0pzavbIDV0yxa6kJU1OyOrnPEyzcuiPv-jL8kmhK8sy2hRVSVtVuTjFScYUut7GLVMJPQYEm2ct4se-8Ro6a2z3gY9HRM9Js4OR4M-Rg2a1sOIibI-CbOLZhS7Qx4hbpo9XpELBUPAzWmuyfvjw9vuOd0fnl529_vUUV5MKQIHRQvKmrZReYadwo63NUPGulrSrFENyLxr8ri0bVmhYpxHuwYmCwDF1uTul-vm1mAncZw8DMJ5bcAfhQUt_l9G_Sl6uwhKeclYTSPh5kTw9nvGMAmjg8RhiPXsHASjZc3j-yrGfgAHVXHz</recordid><startdate>20250122</startdate><enddate>20250122</enddate><creator>Guan, Jian</creator><creator>Du, Jingcheng</creator><creator>Sun, Qian</creator><creator>He, Wen</creator><creator>Ma, Ji</creator><creator>Hassan, Shabi Ui</creator><creator>Wu, Ji</creator><creator>Zhang, Hongjun</creator><creator>Zhang, Sui</creator><creator>Liu, Jiangtao</creator><general>American Association for the Advancement of Science</general><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20250122</creationdate><title>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</title><author>Guan, Jian ; Du, Jingcheng ; Sun, Qian ; He, Wen ; Ma, Ji ; Hassan, Shabi Ui ; Wu, Ji ; Zhang, Hongjun ; Zhang, Sui ; Liu, Jiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-ea7af14139b9f20edfed7b83e33d8c109f9ac2d928c1bb56ef3771098a3c4aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Materials Science</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Du, Jingcheng</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>He, Wen</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Hassan, Shabi Ui</creatorcontrib><creatorcontrib>Wu, Ji</creatorcontrib><creatorcontrib>Zhang, Hongjun</creatorcontrib><creatorcontrib>Zhang, Sui</creatorcontrib><creatorcontrib>Liu, Jiangtao</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jian</au><au>Du, Jingcheng</au><au>Sun, Qian</au><au>He, Wen</au><au>Ma, Ji</au><au>Hassan, Shabi Ui</au><au>Wu, Ji</au><au>Zhang, Hongjun</au><au>Zhang, Sui</au><au>Liu, Jiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</atitle><jtitle>Science advances</jtitle><date>2025-01-22</date><risdate>2025</risdate><volume>11</volume><issue>4</issue><spage>eads0583</spage><pages>eads0583-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.</abstract><pub>American Association for the Advancement of Science</pub><doi>10.1126/sciadv.ads0583</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2375-2548
ispartof Science advances, 2025-01, Vol.11 (4), p.eads0583
issn 2375-2548
2375-2548
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753381
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Materials Science
Physical and Materials Sciences
SciAdv r-articles
title Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T12%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-organic%20cages%20improving%20microporosity%20in%20polymeric%20membrane%20for%20superior%20CO2%20capture&rft.jtitle=Science%20advances&rft.au=Guan,%20Jian&rft.date=2025-01-22&rft.volume=11&rft.issue=4&rft.spage=eads0583&rft.pages=eads0583-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.ads0583&rft_dat=%3Cproquest_pubme%3E3158754863%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158754863&rft_id=info:pmid/&rfr_iscdi=true