Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture
Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned...
Gespeichert in:
Veröffentlicht in: | Science advances 2025-01, Vol.11 (4), p.eads0583 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | eads0583 |
container_title | Science advances |
container_volume | 11 |
creator | Guan, Jian Du, Jingcheng Sun, Qian He, Wen Ma, Ji Hassan, Shabi Ui Wu, Ji Zhang, Hongjun Zhang, Sui Liu, Jiangtao |
description | Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications. |
doi_str_mv | 10.1126/sciadv.ads0583 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158754863</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-ea7af14139b9f20edfed7b83e33d8c109f9ac2d928c1bb56ef3771098a3c4aaf3</originalsourceid><addsrcrecordid>eNpVkM1LxDAQxYMouKx79dyjl65N0zbtSWTxC1b2ohcvYZpOaqRpYtIW9r834B70NG_ePH7whpBrmm0pzavbIDV0yxa6kJU1OyOrnPEyzcuiPv-jL8kmhK8sy2hRVSVtVuTjFScYUut7GLVMJPQYEm2ct4se-8Ro6a2z3gY9HRM9Js4OR4M-Rg2a1sOIibI-CbOLZhS7Qx4hbpo9XpELBUPAzWmuyfvjw9vuOd0fnl529_vUUV5MKQIHRQvKmrZReYadwo63NUPGulrSrFENyLxr8ri0bVmhYpxHuwYmCwDF1uTul-vm1mAncZw8DMJ5bcAfhQUt_l9G_Sl6uwhKeclYTSPh5kTw9nvGMAmjg8RhiPXsHASjZc3j-yrGfgAHVXHz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158754863</pqid></control><display><type>article</type><title>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Guan, Jian ; Du, Jingcheng ; Sun, Qian ; He, Wen ; Ma, Ji ; Hassan, Shabi Ui ; Wu, Ji ; Zhang, Hongjun ; Zhang, Sui ; Liu, Jiangtao</creator><creatorcontrib>Guan, Jian ; Du, Jingcheng ; Sun, Qian ; He, Wen ; Ma, Ji ; Hassan, Shabi Ui ; Wu, Ji ; Zhang, Hongjun ; Zhang, Sui ; Liu, Jiangtao</creatorcontrib><description>Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.</description><identifier>ISSN: 2375-2548</identifier><identifier>EISSN: 2375-2548</identifier><identifier>DOI: 10.1126/sciadv.ads0583</identifier><language>eng</language><publisher>American Association for the Advancement of Science</publisher><subject>Materials Science ; Physical and Materials Sciences ; SciAdv r-articles</subject><ispartof>Science advances, 2025-01, Vol.11 (4), p.eads0583</ispartof><rights>Copyright © 2025 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 2025 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753381/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753381/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Du, Jingcheng</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>He, Wen</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Hassan, Shabi Ui</creatorcontrib><creatorcontrib>Wu, Ji</creatorcontrib><creatorcontrib>Zhang, Hongjun</creatorcontrib><creatorcontrib>Zhang, Sui</creatorcontrib><creatorcontrib>Liu, Jiangtao</creatorcontrib><title>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</title><title>Science advances</title><description>Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.</description><subject>Materials Science</subject><subject>Physical and Materials Sciences</subject><subject>SciAdv r-articles</subject><issn>2375-2548</issn><issn>2375-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LxDAQxYMouKx79dyjl65N0zbtSWTxC1b2ohcvYZpOaqRpYtIW9r834B70NG_ePH7whpBrmm0pzavbIDV0yxa6kJU1OyOrnPEyzcuiPv-jL8kmhK8sy2hRVSVtVuTjFScYUut7GLVMJPQYEm2ct4se-8Ro6a2z3gY9HRM9Js4OR4M-Rg2a1sOIibI-CbOLZhS7Qx4hbpo9XpELBUPAzWmuyfvjw9vuOd0fnl529_vUUV5MKQIHRQvKmrZReYadwo63NUPGulrSrFENyLxr8ri0bVmhYpxHuwYmCwDF1uTul-vm1mAncZw8DMJ5bcAfhQUt_l9G_Sl6uwhKeclYTSPh5kTw9nvGMAmjg8RhiPXsHASjZc3j-yrGfgAHVXHz</recordid><startdate>20250122</startdate><enddate>20250122</enddate><creator>Guan, Jian</creator><creator>Du, Jingcheng</creator><creator>Sun, Qian</creator><creator>He, Wen</creator><creator>Ma, Ji</creator><creator>Hassan, Shabi Ui</creator><creator>Wu, Ji</creator><creator>Zhang, Hongjun</creator><creator>Zhang, Sui</creator><creator>Liu, Jiangtao</creator><general>American Association for the Advancement of Science</general><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20250122</creationdate><title>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</title><author>Guan, Jian ; Du, Jingcheng ; Sun, Qian ; He, Wen ; Ma, Ji ; Hassan, Shabi Ui ; Wu, Ji ; Zhang, Hongjun ; Zhang, Sui ; Liu, Jiangtao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-ea7af14139b9f20edfed7b83e33d8c109f9ac2d928c1bb56ef3771098a3c4aaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Materials Science</topic><topic>Physical and Materials Sciences</topic><topic>SciAdv r-articles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guan, Jian</creatorcontrib><creatorcontrib>Du, Jingcheng</creatorcontrib><creatorcontrib>Sun, Qian</creatorcontrib><creatorcontrib>He, Wen</creatorcontrib><creatorcontrib>Ma, Ji</creatorcontrib><creatorcontrib>Hassan, Shabi Ui</creatorcontrib><creatorcontrib>Wu, Ji</creatorcontrib><creatorcontrib>Zhang, Hongjun</creatorcontrib><creatorcontrib>Zhang, Sui</creatorcontrib><creatorcontrib>Liu, Jiangtao</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guan, Jian</au><au>Du, Jingcheng</au><au>Sun, Qian</au><au>He, Wen</au><au>Ma, Ji</au><au>Hassan, Shabi Ui</au><au>Wu, Ji</au><au>Zhang, Hongjun</au><au>Zhang, Sui</au><au>Liu, Jiangtao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture</atitle><jtitle>Science advances</jtitle><date>2025-01-22</date><risdate>2025</risdate><volume>11</volume><issue>4</issue><spage>eads0583</spage><pages>eads0583-</pages><issn>2375-2548</issn><eissn>2375-2548</eissn><abstract>Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.Mixed matrix membranes, with well-designed pore structure inside the polymeric matrix via the incorporation of inorganic components, offer a promising solution for addressing CO2 emissions. Here, we synthesized a series of novel metal organic cages (MOCs) with aperture pore size precisely positioned between CO2 and N2 or CH4. These MOCs were uniformly dispersed in the polymers of intrinsic microporosity (PIM-1). Among them, the MOC-Ph cage effectively modulated chain packing and optimized the microporous structure of the membrane. Remarkably, the PIM-Ph-5% membrane shows superior performance, achieving an excellent CO2 permeability of 8803.4 barrer and CO2/N2 selectivity of 59.9, far exceeding the 2019 upper bound. This approach opens opportunities for improving the porous structure of polymeric membranes for CO2 capture and other separation applications.</abstract><pub>American Association for the Advancement of Science</pub><doi>10.1126/sciadv.ads0583</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2375-2548 |
ispartof | Science advances, 2025-01, Vol.11 (4), p.eads0583 |
issn | 2375-2548 2375-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_11753381 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Materials Science Physical and Materials Sciences SciAdv r-articles |
title | Metal-organic cages improving microporosity in polymeric membrane for superior CO2 capture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T12%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal-organic%20cages%20improving%20microporosity%20in%20polymeric%20membrane%20for%20superior%20CO2%20capture&rft.jtitle=Science%20advances&rft.au=Guan,%20Jian&rft.date=2025-01-22&rft.volume=11&rft.issue=4&rft.spage=eads0583&rft.pages=eads0583-&rft.issn=2375-2548&rft.eissn=2375-2548&rft_id=info:doi/10.1126/sciadv.ads0583&rft_dat=%3Cproquest_pubme%3E3158754863%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158754863&rft_id=info:pmid/&rfr_iscdi=true |