Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism
Yeast U2 small nuclear RNA (snRNA) contains three pseudouridines (Ψ35, Ψ42, and Ψ44). Pus7p and Pus1p catalyze the formation of Ψ35 and Ψ44, respectively, but the mechanism of Ψ42 formation remains unclear. Using a U2 substrate containing a single 32 P radiolabel at position 42, we screened a GST‐OR...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2005-07, Vol.24 (13), p.2403-2413 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2413 |
---|---|
container_issue | 13 |
container_start_page | 2403 |
container_title | The EMBO journal |
container_volume | 24 |
creator | Ma, X Yang, C Alexandrov, A Grayhack, E.J Behm-Ansmant, I Yu, Y.T |
description | Yeast U2 small nuclear RNA (snRNA) contains three pseudouridines (Ψ35, Ψ42, and Ψ44). Pus7p and Pus1p catalyze the formation of Ψ35 and Ψ44, respectively, but the mechanism of Ψ42 formation remains unclear. Using a U2 substrate containing a single
32
P radiolabel at position 42, we screened a GST‐ORF library for pseudouridylase activity. Surprisingly, we found a Ψ42‐specific pseudouridylase activity that coincided with Nhp2p, a protein component of a Box H/ACA sno/scaRNP (small nucleolar/Cajal body‐specific ribonucleoprotein). When isolated by tandem affinity purification (TAP), the other protein components of the H/ACA sno/scaRNP also copurified with the pseudouridylase activity. Micrococcal nuclease‐treated TAP preparations were devoid of pseudouridylase activity; however, activity was restored upon addition of RNAs from TAP preparations. Pseudouridylation reconstitution using RNAs from a Box H/ACA RNA library identified snR81, a snoRNA known to guide rRNA pseudouridylation, as the Ψ42‐specific guide RNA. Using the snR81‐deletion strain, Nhp2p‐ or Cbf5p‐conditional depletion strain, and a
cbf5
mutation strain, we further demonstrated that the pseudouridylase activity is dependent on snR81 snoRNP
in vivo
. Our data indicate that snRNA pseudouridylation can be catalyzed by both RNA‐dependent and RNA‐independent mechanisms. |
doi_str_mv | 10.1038/sj.emboj.7600718 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1173158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68002888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6728-cfc8fe5131913b3bef80095cf45ca0897a504c5b8ff0321a588dc48fac0c41103</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxSMEYmVw5wQWB24p_tqx41yQtmkrP8ZAhYqj5ThO65LExU4G4a_HLNU2kNAuthx_3svz9yXJU8BzwFS8Ctu5aUu3necc4xzEvWQGGccpwTm7n8ww4ZBmIIqD5FEIW4wxEzk8TA6AFZzE4ywxn4IZKjd4W42N6q3rkKvRaFTo0Yqg0C0vjpANSKteNeMvU6FyRMb2G-OR6lC8TdeDreJ3569OtqvMzsSl61Fr9EZ1NrSPkwe1aoJ5st8Pk9XZ6ZeTN-n5x8Xbk6PzVPOciFTXWtSGAYUCaElLUwuMC6brjGmFRZErhjPNSlHXmBJQTIhKZ6JWGusM4kQOk9eT724oW1PpGMKrRu68bZUfpVNW_n3T2Y1cu0sJkFNgIhq83Bt4930woZetDdo0jeqMG4LkMRAR4m4wNgAcKIvgi3_AbZx2F6cgoWCEU5rxCOEJ0t6F4E19HRmw_NO0DFt51bTcNx0lz24_9UawrzYCxQT8sI0Z7zSUpx-O392Yw6QNUdatjb8V-v-B0kljQ29-Xv9P-W-S5zRn8uvFQi5pQY7fL5aSRP75xNfKSbX2NsjVZ4KBYsDxAZzQ39kk4Lc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195263346</pqid></control><display><type>article</type><title>Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism</title><source>Springer Nature OA Free Journals</source><creator>Ma, X ; Yang, C ; Alexandrov, A ; Grayhack, E.J ; Behm-Ansmant, I ; Yu, Y.T</creator><creatorcontrib>Ma, X ; Yang, C ; Alexandrov, A ; Grayhack, E.J ; Behm-Ansmant, I ; Yu, Y.T</creatorcontrib><description>Yeast U2 small nuclear RNA (snRNA) contains three pseudouridines (Ψ35, Ψ42, and Ψ44). Pus7p and Pus1p catalyze the formation of Ψ35 and Ψ44, respectively, but the mechanism of Ψ42 formation remains unclear. Using a U2 substrate containing a single
32
P radiolabel at position 42, we screened a GST‐ORF library for pseudouridylase activity. Surprisingly, we found a Ψ42‐specific pseudouridylase activity that coincided with Nhp2p, a protein component of a Box H/ACA sno/scaRNP (small nucleolar/Cajal body‐specific ribonucleoprotein). When isolated by tandem affinity purification (TAP), the other protein components of the H/ACA sno/scaRNP also copurified with the pseudouridylase activity. Micrococcal nuclease‐treated TAP preparations were devoid of pseudouridylase activity; however, activity was restored upon addition of RNAs from TAP preparations. Pseudouridylation reconstitution using RNAs from a Box H/ACA RNA library identified snR81, a snoRNA known to guide rRNA pseudouridylation, as the Ψ42‐specific guide RNA. Using the snR81‐deletion strain, Nhp2p‐ or Cbf5p‐conditional depletion strain, and a
cbf5
mutation strain, we further demonstrated that the pseudouridylase activity is dependent on snR81 snoRNP
in vivo
. Our data indicate that snRNA pseudouridylation can be catalyzed by both RNA‐dependent and RNA‐independent mechanisms.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7600718</identifier><identifier>PMID: 15962000</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Catalysis ; EMBO36 ; Gene Library ; Hydro-Lyases - metabolism ; Microtubule-Associated Proteins - metabolism ; Mutation ; Nuclear Proteins - metabolism ; pseudouridine ; Pseudouridine - metabolism ; pseudouridylase ; pseudouridylation ; pseudouridylation reconstitution ; Ribonucleoproteins, Small Nuclear - metabolism ; Ribonucleoproteins, Small Nucleolar - metabolism ; ribonucleosides ; RNA pseudouridylation ; RNA, Fungal - metabolism ; RNA, Small Nuclear - chemistry ; RNA, Small Nuclear - metabolism ; RNA, Small Nucleolar - metabolism ; S. cerevisiae ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - metabolism ; small nuclear RNA ; snR81 snoRNP ; U2 snRNA ; Yeasts</subject><ispartof>The EMBO journal, 2005-07, Vol.24 (13), p.2403-2413</ispartof><rights>European Molecular Biology Organization 2005</rights><rights>Copyright © 2005 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Jul 6, 2005</rights><rights>Copyright © 2005, European Molecular Biology Organization 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6728-cfc8fe5131913b3bef80095cf45ca0897a504c5b8ff0321a588dc48fac0c41103</citedby><cites>FETCH-LOGICAL-c6728-cfc8fe5131913b3bef80095cf45ca0897a504c5b8ff0321a588dc48fac0c41103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173158/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1173158/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/sj.emboj.7600718$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15962000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, X</creatorcontrib><creatorcontrib>Yang, C</creatorcontrib><creatorcontrib>Alexandrov, A</creatorcontrib><creatorcontrib>Grayhack, E.J</creatorcontrib><creatorcontrib>Behm-Ansmant, I</creatorcontrib><creatorcontrib>Yu, Y.T</creatorcontrib><title>Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Yeast U2 small nuclear RNA (snRNA) contains three pseudouridines (Ψ35, Ψ42, and Ψ44). Pus7p and Pus1p catalyze the formation of Ψ35 and Ψ44, respectively, but the mechanism of Ψ42 formation remains unclear. Using a U2 substrate containing a single
32
P radiolabel at position 42, we screened a GST‐ORF library for pseudouridylase activity. Surprisingly, we found a Ψ42‐specific pseudouridylase activity that coincided with Nhp2p, a protein component of a Box H/ACA sno/scaRNP (small nucleolar/Cajal body‐specific ribonucleoprotein). When isolated by tandem affinity purification (TAP), the other protein components of the H/ACA sno/scaRNP also copurified with the pseudouridylase activity. Micrococcal nuclease‐treated TAP preparations were devoid of pseudouridylase activity; however, activity was restored upon addition of RNAs from TAP preparations. Pseudouridylation reconstitution using RNAs from a Box H/ACA RNA library identified snR81, a snoRNA known to guide rRNA pseudouridylation, as the Ψ42‐specific guide RNA. Using the snR81‐deletion strain, Nhp2p‐ or Cbf5p‐conditional depletion strain, and a
cbf5
mutation strain, we further demonstrated that the pseudouridylase activity is dependent on snR81 snoRNP
in vivo
. Our data indicate that snRNA pseudouridylation can be catalyzed by both RNA‐dependent and RNA‐independent mechanisms.</description><subject>Catalysis</subject><subject>EMBO36</subject><subject>Gene Library</subject><subject>Hydro-Lyases - metabolism</subject><subject>Microtubule-Associated Proteins - metabolism</subject><subject>Mutation</subject><subject>Nuclear Proteins - metabolism</subject><subject>pseudouridine</subject><subject>Pseudouridine - metabolism</subject><subject>pseudouridylase</subject><subject>pseudouridylation</subject><subject>pseudouridylation reconstitution</subject><subject>Ribonucleoproteins, Small Nuclear - metabolism</subject><subject>Ribonucleoproteins, Small Nucleolar - metabolism</subject><subject>ribonucleosides</subject><subject>RNA pseudouridylation</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Small Nuclear - chemistry</subject><subject>RNA, Small Nuclear - metabolism</subject><subject>RNA, Small Nucleolar - metabolism</subject><subject>S. cerevisiae</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>small nuclear RNA</subject><subject>snR81 snoRNP</subject><subject>U2 snRNA</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc9v0zAcxSMEYmVw5wQWB24p_tqx41yQtmkrP8ZAhYqj5ThO65LExU4G4a_HLNU2kNAuthx_3svz9yXJU8BzwFS8Ctu5aUu3necc4xzEvWQGGccpwTm7n8ww4ZBmIIqD5FEIW4wxEzk8TA6AFZzE4ywxn4IZKjd4W42N6q3rkKvRaFTo0Yqg0C0vjpANSKteNeMvU6FyRMb2G-OR6lC8TdeDreJ3569OtqvMzsSl61Fr9EZ1NrSPkwe1aoJ5st8Pk9XZ6ZeTN-n5x8Xbk6PzVPOciFTXWtSGAYUCaElLUwuMC6brjGmFRZErhjPNSlHXmBJQTIhKZ6JWGusM4kQOk9eT724oW1PpGMKrRu68bZUfpVNW_n3T2Y1cu0sJkFNgIhq83Bt4930woZetDdo0jeqMG4LkMRAR4m4wNgAcKIvgi3_AbZx2F6cgoWCEU5rxCOEJ0t6F4E19HRmw_NO0DFt51bTcNx0lz24_9UawrzYCxQT8sI0Z7zSUpx-O392Yw6QNUdatjb8V-v-B0kljQ29-Xv9P-W-S5zRn8uvFQi5pQY7fL5aSRP75xNfKSbX2NsjVZ4KBYsDxAZzQ39kk4Lc</recordid><startdate>20050706</startdate><enddate>20050706</enddate><creator>Ma, X</creator><creator>Yang, C</creator><creator>Alexandrov, A</creator><creator>Grayhack, E.J</creator><creator>Behm-Ansmant, I</creator><creator>Yu, Y.T</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050706</creationdate><title>Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism</title><author>Ma, X ; Yang, C ; Alexandrov, A ; Grayhack, E.J ; Behm-Ansmant, I ; Yu, Y.T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6728-cfc8fe5131913b3bef80095cf45ca0897a504c5b8ff0321a588dc48fac0c41103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Catalysis</topic><topic>EMBO36</topic><topic>Gene Library</topic><topic>Hydro-Lyases - metabolism</topic><topic>Microtubule-Associated Proteins - metabolism</topic><topic>Mutation</topic><topic>Nuclear Proteins - metabolism</topic><topic>pseudouridine</topic><topic>Pseudouridine - metabolism</topic><topic>pseudouridylase</topic><topic>pseudouridylation</topic><topic>pseudouridylation reconstitution</topic><topic>Ribonucleoproteins, Small Nuclear - metabolism</topic><topic>Ribonucleoproteins, Small Nucleolar - metabolism</topic><topic>ribonucleosides</topic><topic>RNA pseudouridylation</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Small Nuclear - chemistry</topic><topic>RNA, Small Nuclear - metabolism</topic><topic>RNA, Small Nucleolar - metabolism</topic><topic>S. cerevisiae</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>small nuclear RNA</topic><topic>snR81 snoRNP</topic><topic>U2 snRNA</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, X</creatorcontrib><creatorcontrib>Yang, C</creatorcontrib><creatorcontrib>Alexandrov, A</creatorcontrib><creatorcontrib>Grayhack, E.J</creatorcontrib><creatorcontrib>Behm-Ansmant, I</creatorcontrib><creatorcontrib>Yu, Y.T</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ma, X</au><au>Yang, C</au><au>Alexandrov, A</au><au>Grayhack, E.J</au><au>Behm-Ansmant, I</au><au>Yu, Y.T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2005-07-06</date><risdate>2005</risdate><volume>24</volume><issue>13</issue><spage>2403</spage><epage>2413</epage><pages>2403-2413</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Yeast U2 small nuclear RNA (snRNA) contains three pseudouridines (Ψ35, Ψ42, and Ψ44). Pus7p and Pus1p catalyze the formation of Ψ35 and Ψ44, respectively, but the mechanism of Ψ42 formation remains unclear. Using a U2 substrate containing a single
32
P radiolabel at position 42, we screened a GST‐ORF library for pseudouridylase activity. Surprisingly, we found a Ψ42‐specific pseudouridylase activity that coincided with Nhp2p, a protein component of a Box H/ACA sno/scaRNP (small nucleolar/Cajal body‐specific ribonucleoprotein). When isolated by tandem affinity purification (TAP), the other protein components of the H/ACA sno/scaRNP also copurified with the pseudouridylase activity. Micrococcal nuclease‐treated TAP preparations were devoid of pseudouridylase activity; however, activity was restored upon addition of RNAs from TAP preparations. Pseudouridylation reconstitution using RNAs from a Box H/ACA RNA library identified snR81, a snoRNA known to guide rRNA pseudouridylation, as the Ψ42‐specific guide RNA. Using the snR81‐deletion strain, Nhp2p‐ or Cbf5p‐conditional depletion strain, and a
cbf5
mutation strain, we further demonstrated that the pseudouridylase activity is dependent on snR81 snoRNP
in vivo
. Our data indicate that snRNA pseudouridylation can be catalyzed by both RNA‐dependent and RNA‐independent mechanisms.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>15962000</pmid><doi>10.1038/sj.emboj.7600718</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2005-07, Vol.24 (13), p.2403-2413 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1173158 |
source | Springer Nature OA Free Journals |
subjects | Catalysis EMBO36 Gene Library Hydro-Lyases - metabolism Microtubule-Associated Proteins - metabolism Mutation Nuclear Proteins - metabolism pseudouridine Pseudouridine - metabolism pseudouridylase pseudouridylation pseudouridylation reconstitution Ribonucleoproteins, Small Nuclear - metabolism Ribonucleoproteins, Small Nucleolar - metabolism ribonucleosides RNA pseudouridylation RNA, Fungal - metabolism RNA, Small Nuclear - chemistry RNA, Small Nuclear - metabolism RNA, Small Nucleolar - metabolism S. cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - metabolism small nuclear RNA snR81 snoRNP U2 snRNA Yeasts |
title | Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A33%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pseudouridylation%20of%20yeast%20U2%20snRNA%20is%20catalyzed%20by%20either%20an%20RNA-guided%20or%20RNA-independent%20mechanism&rft.jtitle=The%20EMBO%20journal&rft.au=Ma,%20X&rft.date=2005-07-06&rft.volume=24&rft.issue=13&rft.spage=2403&rft.epage=2413&rft.pages=2403-2413&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7600718&rft_dat=%3Cproquest_C6C%3E68002888%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195263346&rft_id=info:pmid/15962000&rfr_iscdi=true |